UK Biobank (core renewal)
Lead Research Organisation:
UK Biobank
Department Name: UNLISTED
Abstract
UK Biobank is supported by The Wellcome Trust, The National Institute of Health Research, The Medical Research Council, The British Heart Foundation and Cancer Research UK. The figures presented on this record represent the Medical Research Council funding contribution only with some additional UKRI Infrastructure funds in addition.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
Technical Summary
The UK Biobank resource has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. There are now sufficient numbers of incident cases of the commoner conditions to support extensive and powerful research into their determinants.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
Organisations
- UK Biobank (Lead Research Organisation)
- AbbVie Inc (Collaboration)
- AstraZeneca (Collaboration)
- Regeneron Pharmaceuticals, Inc. (Collaboration)
- Alnylam Pharmaceuticals (Collaboration)
- Pfizer Inc (Collaboration)
- Takeda Pharmaceutical Company (Collaboration)
- Bristol-Myers Squibb (Collaboration)
- Biogen Idec (Collaboration)
- GlaxoSmithKline (GSK) (Collaboration)
People |
ORCID iD |
| Rory Collins (Principal Investigator) |
Publications
Sandoval-Plata G
(2021)
Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank
in Annals of the Rheumatic Diseases
Dahlqvist A
(2022)
POS0318 CHRONIC WIDESPREAD PAIN AND MORTALITY - A 25 YEAR FOLLOW UP
in Annals of the Rheumatic Diseases
Canning J
(2022)
POS0576 ASSOCIATION BETWEEN POTENTIAL PROGNOSTIC FACTORS AND ADVERSE HEALTH OUTCOMES IN RHEUMATOID ARTHRITIS: A STUDY OF 5658 UK BIOBANK PARTICIPANTS
in Annals of the Rheumatic Diseases
Varela D
(2022)
AB0314 MULTIMORBIDITY BURDEN IN RHEUMATOID ARTHRITIS
in Annals of the Rheumatic Diseases
Raghupathy N
(2022)
AB0003 PHENOTYPIC EFFECTS OF GENETIC LOSS OF FUNCTION IN TYROSINE KINASE 2 USING LARGE-SCALE BIOBANKS
in Annals of the Rheumatic Diseases
McCormick N
(2022)
OP0166 CHRONIC KIDNEY DISEASE AND AMPLIFICATION OF SERUM URATE IMPACT ON GOUT RISK: POPULATION-BASED STUDY OF > 450,000 UK BIOBANK PARTICIPANTS
in Annals of the Rheumatic Diseases
Topless R
(2022)
POS1222 FOLIC ACID AND METHOTREXATE USE AND THEIR ASSOCIATION WITH COVID-19 DIAGNOSIS AND MORTALITY: AN ANALYSIS FROM THE UK BIOBANK
in Annals of the Rheumatic Diseases
Xia J
(2020)
Systemic evaluation of the relationship between psoriasis, psoriatic arthritis and osteoporosis: observational and Mendelian randomisation study.
in Annals of the rheumatic diseases
Li ZH
(2020)
Associations of regular glucosamine use with all-cause and cause-specific mortality: a large prospective cohort study.
in Annals of the rheumatic diseases
Henkel C
(2023)
Genome-wide association meta-analysis of knee and hip osteoarthritis uncovers genetic differences between patients treated with joint replacement and patients without joint replacement.
in Annals of the rheumatic diseases
Zhao S
(2022)
POS0307 IMPAIRED GLYCAEMIC CONTROL IS ASSOCIATED WITH INCREASED RISK OF PSORIATIC ARTHRITIS: MENDELIAN RANDOMISATION STUDY
in Annals of the Rheumatic Diseases
Stanciu I
(2022)
POS0590 ASSOCIATIONS BETWEEN SELF-REPORTED RHEUMATOID ARTHRITIS, RHEUMATOID FACTOR POSITIVITY AND STRUCTURAL BRAIN PHENOTYPES IN UK BIOBANK
in Annals of the Rheumatic Diseases
Rahman MS
(2021)
Genome-wide association study identifies RNF123 locus as associated with chronic widespread musculoskeletal pain.
in Annals of the rheumatic diseases
Cox J
(2022)
AB0060 SYSTEMIC INFLAMMATORY EFFECT ON HIPPOCAMPAL VOLUME IN RHEUMATOID ARTHRITIS AND ULCERATIVE COLITIS
in Annals of the Rheumatic Diseases
Shirai Y
(2022)
Multi-trait and cross-population genome-wide association studies across autoimmune and allergic diseases identify shared and distinct genetic component.
in Annals of the rheumatic diseases
Joshi A
(2022)
OP0164 A POPULATION-BASED, PROSPECTIVE METABOLOMICS STUDY IN THE UK BIOBANK IDENTIFIES GLYCOPROTEIN ACETYLS AS A NOVEL BIOMARKER OF INCIDENT GOUT
in Annals of the Rheumatic Diseases
Saevarsdottir S
(2022)
Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset.
in Annals of the rheumatic diseases
Ou YN
(2022)
Causal effects of serum sex hormone binding protein levels on the risk of amyotrophic lateral sclerosis: a mendelian randomization study.
in Annals of translational medicine
Lalloo D
(2022)
Comparing Anxiety and Depression in Information Technology Workers with Others in Employment: A UK Biobank Cohort Study.
in Annals of work exposures and health
Coronado I
(2021)
Towards Stroke Biomarkers on Fundus Retinal Imaging: A Comparison Between Vasculature Embeddings and General Purpose Convolutional Neural Networks.
in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Damaraju E
(2021)
A multimodal IVA fusion approach to identify linked neuroimaging markers.
in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Beach C
(2021)
Impact of shift working on the potential for self-powering via kinetic energy harvesting in wearable devices.
in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Tan VY
(2022)
The UK Biobank: A Shining Example of Genome-Wide Association Study Science with the Power to Detect the Murky Complications of Real-World Epidemiology.
in Annual review of genomics and human genetics
Lehrer S
(2023)
Androgen Deprivation Therapy Unrelated to Alzheimer's Disease in the UK Biobank Cohort.
in Anticancer research
Behrendt I
(2020)
Association of Antioxidants Use with All-Cause and Cause-Specific Mortality: A Prospective Study of the UK Biobank.
in Antioxidants (Basel, Switzerland)
| Description | Impact of clinically silent atrial fibrillation on cerebrovascular disease and cognitive decline in the UK Biobank Imaging Cohort |
| Amount | £2,474,260 (GBP) |
| Funding ID | RG/18/6/33576 |
| Organisation | British Heart Foundation (BHF) |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 06/2019 |
| End | 06/2024 |
| Description | UK Biobank - Data Analytics Platform |
| Amount | £20,000,000 (GBP) |
| Organisation | Wellcome Trust |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - The Repeat Imaging Project |
| Amount | £2,500,000 (GBP) |
| Funding ID | R39738/CN039 |
| Organisation | MRC Dementias Platform UK |
| Sector | Academic/University |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - Whole genome sequencing of 50,000 UKB participants |
| Amount | £30,000,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 03/2020 |
| Description | UK Biobank- Expansion of the UKB imaging to a 4th centre and repeat imaging assessment of 10,000 participants |
| Amount | £8,500,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 12/2022 |
| Description | Biobank Enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Biobank Enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Genetic enhancement |
| Organisation | AbbVie Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Alnylam Pharmaceuticals |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | AstraZeneca |
| Country | United Kingdom |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Biogen Idec |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Bristol-Myers Squibb |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Pfizer Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Takeda Pharmaceutical Company |
| Department | Takeda Pharmaceuticals U.S.A., Inc. (TPUSA) |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | UK Biobank GP linkage |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | UK Biobank event for the General Practice Data for Planing and Research programme (GP linkage). 1,200 attendees |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank Scientific Conference |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Public/other audiences |
| Results and Impact | The UK Biobank Scientific Symposium included presentations about the successes and future plans of the UK Biobank. It took place on 21 June 2018 in London |
| Year(s) Of Engagement Activity | 2018 |
| Description | UK Biobank Scientific Conference 2021 |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | The UK Biobank Scientific Conference in 2021 had 3,000 participants from the research community, professional practitioners, media, study particiapnts and other partners. |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank participant imaging event |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UK Biobank for participants of the imaging work |
| Year(s) Of Engagement Activity | 2021 |
| Description | UKBiobank participant events - 2014 - 2019 |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UKB Biobank participants regularly attend events aimed at informing them about the work being undertaken with their data. Usually, the events last a few hours and include an overview from the chief scientist and two talks from scientists that have used UKB data. From 2014 - 2020 over 4,000 participants have taken part in events in Edinburgh (4), Manchester (4), Nottingham, Leeds, Cardiff (2), Newcastle (5), Glasgow (2), Bristol (2) and Reading(4). They are often over-subscribed and participants leave these events wishing to seek more information and support he programme in new ways (EG in imaging, genome sequencing) |
| Year(s) Of Engagement Activity | 2014,2015,2016,2017,2018,2019 |
| URL | http://www.ukbiobank.ac.uk |