Climate Change Predictions with a Fully Resolved Stratosphere
Lead Research Organisation:
UNIVERSITY OF READING
Department Name: Meteorology
Abstract
Climate model simulations for the next assessment of the Intergovernmental Panel on Climate Change (IPCC) are currently being prepared by climate modelling centres around the world. In this joint project with the Met Office, fully coupled atmosphere-ocean model simulations will be performed and analysed using a 'high-top' version of the Met Office Hadley Centre climate model that extends to 85km and therefore fully resolves processes in the stratosphere. Simulations of the past (1860-present) and into the future (to 2100) will be carried out. The project will examine the climate change signals predicted by the fully coupled ocean-troposphere-stratosphere model and investigate the stratospheric influence on surface climate. These aims will be achieved by careful analysis of the model runs, together with additional experiments to isolate processes, test mechanisms and improve statistical significance. Particular emphasis will be placed on (a) regional and seasonal patterns of surface change, especially the North Atlantic Oscillation and impacts over Europe, and (b) detection and attribution studies, exploiting the well-known tropospheric warming / stratospheric cooling signature of anthropogenic influence. Comparisons will be carried out with observations, with corresponding low-top model runs that do not fully resolve the stratosphere and with runs from high-top models carried out by other international climate modelling groups.
Publications
Charlton-Perez A
(2011)
On the Use of Geometric Moments to Examine the Continuum of Sudden Stratospheric Warmings
in Journal of the Atmospheric Sciences
Jones C
(2011)
The HadGEM2-ES implementation of CMIP5 centennial simulations
in Geoscientific Model Development
Cnossen I
(2011)
Solar signal propagation: The role of gravity waves and stratospheric sudden warmings
in Journal of Geophysical Research
Ineson S
(2011)
Solar forcing of winter climate variability in the Northern Hemisphere
in Nature Geoscience
Mitchell D
(2011)
The structure and evolution of the stratospheric vortex in response to natural forcings
in Journal of Geophysical Research
Lu H
(2011)
High- and low-frequency 11-year solar cycle signatures in the Southern Hemispheric winter and spring
in Quarterly Journal of the Royal Meteorological Society
Richter J
(2011)
Influence of the quasi-biennial oscillation and El Niño-Southern Oscillation on the frequency of sudden stratospheric warmings
in Journal of Geophysical Research
Mitchell D
(2012)
The nature of Arctic polar vortices in chemistry-climate models
in Quarterly Journal of the Royal Meteorological Society
Mitchell D
(2012)
CORRIGENDUM
in Journal of the Atmospheric Sciences
Wilcox L
(2012)
Trends in Austral jet position in ensembles of high- and low-top CMIP5 models
in Journal of Geophysical Research: Atmospheres
Gray L
(2013)
Stratospheric Variability in Twentieth-Century CMIP5 Simulations of the Met Office Climate Model: High Top versus Low Top
in Journal of Climate
Anstey J
(2013)
The Influence of Stratospheric Vortex Displacements and Splits on Surface Climate
in Journal of Climate
Anstey J
(2013)
Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution
in Journal of Geophysical Research: Atmospheres
Ermolli I
(2013)
Recent variability of the solar spectral irradiance and its impact on climate modelling
in Atmospheric Chemistry and Physics
Hansen F
(2013)
Sensitivity of stratospheric dynamics and chemistry to QBO nudging width in the chemistry?climate model WACCM
in Journal of Geophysical Research: Atmospheres
Seviour W
(2013)
A practical method to identify displaced and split stratospheric polar vortex events
in Geophysical Research Letters
Gray L
(2013)
A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns
in Journal of Geophysical Research: Atmospheres
Mitchell D
(2013)
Revisiting the controversial issue of tropical tropospheric temperature trends
in Geophysical Research Letters
Mitchell D
(2013)
The impact of stratospheric resolution on the detectability of climate change signals in the free atmosphere
in Geophysical Research Letters
Scaife A
(2013)
A mechanism for lagged North Atlantic climate response to solar variability
in Geophysical Research Letters
Mitchell D
(2014)
Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets
in Quarterly Journal of the Royal Meteorological Society
Watson P
(2014)
How Does the Quasi-Biennial Oscillation Affect the Stratospheric Polar Vortex?
in Journal of the Atmospheric Sciences
Watson P
(2014)
The stratospheric wintertime response to applied extratropical torques and its relationship with the annular mode
in Climate Dynamics
Manzini E
(2014)
Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling STRATOSPHERE-TROPOSPHERE CLIMATE CHANGE
in Journal of Geophysical Research: Atmospheres
Lu H
(2014)
Mechanisms for the Holton-Tan relationship and its decadal variation HT effect and its decadal variation
in Journal of Geophysical Research: Atmospheres
Maycock AC
(2015)
Possible impacts of a future grand solar minimum on climate: Stratospheric and global circulation changes.
in Journal of geophysical research. Atmospheres : JGR
Hood L
(2015)
Solar signals in CMIP-5 simulations: the ozone response
in Quarterly Journal of the Royal Meteorological Society
Mitchell D
(2015)
Solar signals in CMIP-5 simulations: the stratospheric pathway
in Quarterly Journal of the Royal Meteorological Society
Gray L
(2016)
Eleven-year solar cycle signal in the NAO and Atlantic/European blocking
in Quarterly Journal of the Royal Meteorological Society
Ayarzagüena B
(2020)
Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere-Troposphere Coupling to Quadrupled CO 2 Concentrations in CMIP6 Models
in Journal of Geophysical Research: Atmospheres
Gray L
(2022)
Mechanisms of influence of the Semi-Annual Oscillation on stratospheric sudden warmings
in Quarterly Journal of the Royal Meteorological Society
Related Projects
| Project Reference | Relationship | Related To | Start | End | Award Value |
|---|---|---|---|---|---|
| NE/H024409/1 | 16/03/2011 | 30/07/2013 | £19,968 | ||
| NE/H024409/2 | Transfer | NE/H024409/1 | 31/07/2013 | 30/03/2014 | £4,462 |
| Description | Simulations of long-term climate have been carried out with two types of model - one with a fully-resolved stratosphere and one in which only the lower stratosphere was included. The project has found a number of differences in the simulations that can be attributed to the representation of the stratosphere and how it impacts our surface climate. The study has also examined the influences of mechanisms that primarily involve the stratosphere, such as the influence of the 11-year solar cycle. |
| Exploitation Route | The work has highlighted the importance of including a well-resolved stratosphere and the Met Office now routinely include the stratosphere in their climate simulations and have increasingly included it in seasonal forecasts. There is much potential to improve the representation of solar variability in the model and the Met Office has recognised that there is potential to improve seasonal forecasts by doing so. |
| Sectors | Environment |