Edinburgh DiRAC Resource Grant
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
DiRAC (Distributed Research utilising Advanced Computing) is the integrated supercomputing facility for theoretical modelling and HPC-based research in particle physics, nuclear physics, astronomy and cosmology, areas in which the UK is world-leading. It was funded as a result of investment of £12.32 million, from the Government's Large Facilities Capital Fund, together with investment from STFC and from universities. In 2012, the DiRAC facility was upgraded with a further £15 million capital investment from government (DiRAC-2).
The DiRAC facility provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. The science facilitated includes: using supercomputers to enable scientists to calculate what theories of the early universe predict and to test them against observations of the present universe; undertaking lattice field theory calculations whose primary aim is to increase the predictive power of the Standard Model of elementary particle interactions through numerical simulation of Quantum Chromodynamics; carrying out state-of-the-art cosmological simulations, including the large-scale distribution of dark matter, the formation of dark matter haloes, the formation and evolution of galaxies and clusters, the physics of the intergalactic medium and the properties of the intracluster gas.
This grant is to support the continued operation of the DiRAC facilities until 2017 to ensure that the UK remains one of the world-leaders of theoretical modelling in particle physics, astronomy and cosmology.
The DiRAC facility provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. The science facilitated includes: using supercomputers to enable scientists to calculate what theories of the early universe predict and to test them against observations of the present universe; undertaking lattice field theory calculations whose primary aim is to increase the predictive power of the Standard Model of elementary particle interactions through numerical simulation of Quantum Chromodynamics; carrying out state-of-the-art cosmological simulations, including the large-scale distribution of dark matter, the formation of dark matter haloes, the formation and evolution of galaxies and clusters, the physics of the intergalactic medium and the properties of the intracluster gas.
This grant is to support the continued operation of the DiRAC facilities until 2017 to ensure that the UK remains one of the world-leaders of theoretical modelling in particle physics, astronomy and cosmology.
Planned Impact
The high-performance computing applications supported by DiRAC typically involve new algorithms and implementations optimised for high energy efficiency which impose demands on computer architectures that the computing industry has found useful for hardware and system software design and testing.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
People |
ORCID iD |
| Richard Kenway (Principal Investigator) | |
| Peter Boyle (Co-Investigator) |
Publications
Mann A
(2022)
TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr Giant Planet Transiting a Very-low-mass Star in Lower Centaurus Crux
in The Astronomical Journal
Mant B
(2019)
The infrared spectrum of PF 3 and analysis of rotational energy clustering effect
in Molecular Physics
Manzoni G
(2021)
Modelling the quenching of star formation activity from the evolution of the colour-magnitude relation in VIPERS
in New Astronomy
Manzoni G
(2021)
Modelling the quenching of star formation activity from the evolution of the colour-magnitude relation in VIPERS
in New Astronomy
Martin-Alvarez S
(2021)
Unravelling the origin of magnetic fields in galaxies
in Monthly Notices of the Royal Astronomical Society
Martin-Alvarez S
(2020)
How primordial magnetic fields shrink galaxies
in Monthly Notices of the Royal Astronomical Society
Martin-Alvarez S
(2021)
Unravelling the origin of magnetic fields in galaxies
in Monthly Notices of the Royal Astronomical Society
Mason S
(2022)
Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field
in Geophysical & Astrophysical Fluid Dynamics
Matsumoto J
(2021)
Magnetic inhibition of the recollimation instability in relativistic jets
in Monthly Notices of the Royal Astronomical Society
Matsumoto J
(2021)
Magnetic inhibition of the recollimation instability in relativistic jets
in Monthly Notices of the Royal Astronomical Society
Matteini L
(2020)
Magnetic Field Turbulence in the Solar Wind at Sub-ion Scales: In Situ Observations and Numerical Simulations
in Frontiers in Astronomy and Space Sciences
McAlpine S
(2020)
Galaxy mergers in eagle do not induce a significant amount of black hole growth yet do increase the rate of luminous AGN
in Monthly Notices of the Royal Astronomical Society
McAlpine S
(2022)
SIBELIUS-DARK: a galaxy catalogue of the local volume from a constrained realization simulation
in Monthly Notices of the Royal Astronomical Society
McCarthy I
(2020)
The imprint of dark subhaloes on the circumgalactic medium
in Monthly Notices of the Royal Astronomical Society
McLean E
(2020)
B s ? D s l ? form factors for the full q 2 range from lattice QCD with nonperturbatively normalized currents
in Physical Review D
Mellor T
(2021)
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules
in Symmetry
Mellor T
(2021)
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules
in Symmetry
Miles P
(2020)
Fallback Rates from Partial Tidal Disruption Events
in The Astrophysical Journal
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters IV: cluster and halo properties in DGP gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters III: observable-mass scaling relations in f ( R ) gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
The impact of modified gravity on the Sunyaev-Zeldovich effect
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters - V. A self-consistent pipeline for unbiased constraints of f ( R ) gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
The impact of modified gravity on the Sunyaev-Zeldovich effect
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters - V. A self-consistent pipeline for unbiased constraints of f ( R ) gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters IV: cluster and halo properties in DGP gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters III: observable-mass scaling relations in f ( R ) gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2022)
A general framework to test gravity using galaxy clusters - VI. Realistic galaxy formation simulations to study clusters in modified gravity
in Monthly Notices of the Royal Astronomical Society
Mitchell P
(2022)
How gas flows shape the stellar-halo mass relation in the eagle simulation
in Monthly Notices of the Royal Astronomical Society
Mitchell P
(2020)
Galactic inflow and wind recycling rates in the eagle simulations
in Monthly Notices of the Royal Astronomical Society
Mitchell P
(2020)
Galactic outflow rates in the EAGLE simulations
in Monthly Notices of the Royal Astronomical Society
Mitchell P
(2022)
Baryonic mass budgets for haloes in the eagle simulation, including ejected and prevented gas
in Monthly Notices of the Royal Astronomical Society
Moews B
(2021)
Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes
in Monthly Notices of the Royal Astronomical Society
Moews B
(2021)
Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes
in Monthly Notices of the Royal Astronomical Society
Molaro M
(2022)
The effect of inhomogeneous reionization on the Lyman a forest power spectrum at redshift z > 4: implications for thermal parameter recovery
in Monthly Notices of the Royal Astronomical Society
Monaco P
(2020)
The accuracy of weak lensing simulations
in Monthly Notices of the Royal Astronomical Society
Mou Z
(2021)
Simulations of a bubble wall interacting with an electroweak plasma
in Journal of High Energy Physics
Mou Z
(2021)
Simulations of a bubble wall interacting with an electroweak plasma
in Journal of High Energy Physics
Mukherjee S
(2021)
SEAGLE - II. Constraints on feedback models in galaxy formation from massive early-type strong-lens galaxies
in Monthly Notices of the Royal Astronomical Society
Mukherjee S
(2021)
SEAGLE - II. Constraints on feedback models in galaxy formation from massive early-type strong-lens galaxies
in Monthly Notices of the Royal Astronomical Society
Murtas G
(2022)
Collisional ionization and recombination effects on coalescence instability in chromospheric partially ionized plasmas
in Physics of Plasmas
Navarro J
(2020)
The edge of the Galaxy
in Monthly Notices of the Royal Astronomical Society
Nazari Z
(2021)
Oscillon collapse to black holes
in Journal of Cosmology and Astroparticle Physics
Nazari Z
(2021)
Oscillon collapse to black holes
in Journal of Cosmology and Astroparticle Physics
Nealon R
(2019)
Flyby-induced misalignments in planet-hosting discs
in Monthly Notices of the Royal Astronomical Society
Nealon R
(2020)
Spirals, shadows & precession in HD 100453 - II. The hidden companion
in Monthly Notices of the Royal Astronomical Society
Nealon R
(2020)
Rocking shadows in broken circumbinary discs
in Monthly Notices of the Royal Astronomical Society: Letters
Negri A
(2022)
The luminosity of cluster galaxies in the Cluster-EAGLE simulations
in Monthly Notices of the Royal Astronomical Society
Nelson R
(2023)
Gas accretion onto Jupiter mass planets in discs with laminar accretion flows
in Astronomy & Astrophysics
| Description | In December 2009, the STFC Facility, DiRAC, was established to provide distributed High Performance Computing (HPC) services for theoretical modelling and HPC-based research in particle physics, astronomy and cosmology. DiRAC provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. This grant funds the continued operation of the 1.3Pflop/s Blue Gene/Q system at the University of Edinburgh, which was co-developed by Peter Boyle (University of Edinburgh) and IBM to run with high energy efficiency for months at a time on a single problem to solve some of the most complex problems in physics, particularly the strong interactions of quarks and gluons. The DiRAC Facility supports over 250 active researchers at 27 UK HEIs. This includes the research projects of 100 funded research staff (PDRAs and Research Fellows), over 50 post-graduate projects, and £1.6M of funded research grants. |
| Exploitation Route | Theoretical results obtained input to a range of experimental programmes aiming to increase our understanding of Nature. Algorithms and software developed provide input to computer design. |
| Sectors | Digital/Communication/Information Technologies (including Software) |
| URL | http://dirac.ac.uk/ |
| Description | Intel IPAG QCD codesign project |
| Organisation | Intel Corporation |
| Department | Intel Corporation (Jones Farm) |
| Country | United States |
| Sector | Private |
| PI Contribution | We have collaborated with Intel corporation since 2014 with $720k of total direct funding, starting initially as an Intel parallel computing centre, and expanding to direct close collaboration with Intel Pathfinding and Architecture Group. |
| Collaborator Contribution | We have performed detailed optimisation of QCD codes (Wilson, Domain Wall, Staggered) on Intel many core architectures. We have investigated the memory system and interconnect performance, particularly on Intel's latest interconnect hardware called Omnipath. We found serious performance issues and worked with Intel to plan a solution and this has been verified and is available as beta software. It will reach general availability in the Intel MPI 2019 release, and allow threaded concurrent communications in MPI for the first time. A joint paper on the resolution to this was written with the Intel MPI team, and the application of the same QCD programming techniques to machine learning gradient reduction was applied in the paper to the Baidu Research all reduce library, demonstrating a 10x gain for this critical step in machine learning in clustered environments. We are also working with Intel verifying future architectures that will deliver the exascale performance in 2021. |
| Impact | We have performed detailed optimisation of QCD codes (Wilson, Domain Wall, Staggered) on Intel many core architectures. We have investigated the memory system and interconnect performance, particularly on Intel's latest interconnect hardware called Omnipath. We found serious performance issues and worked with Intel to plan a solution and this has been verified and is available as beta software. It will reach general availability in the Intel MPI 2019 release, and allow threaded concurrent communications in MPI for the first time. A joint paper on the resolution to this was written with the Intel MPI team, and the application of the same QCD programming techniques to machine learning gradient reduction was applied in the paper to the Baidu Research all reduce library, demonstrating a 10x gain for this critical step in machine learning in clustered environments. This collaboration has been renewed annually in 2018, 2019, 2020. Two DiRAC RSE's were hired by Intel to work on the Turing collaboration. |
| Start Year | 2016 |