Edinburgh DiRAC Resource Grant
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
DiRAC (Distributed Research utilising Advanced Computing) is the integrated supercomputing facility for theoretical modelling and HPC-based research in particle physics, nuclear physics, astronomy and cosmology, areas in which the UK is world-leading. It was funded as a result of investment of £12.32 million, from the Government's Large Facilities Capital Fund, together with investment from STFC and from universities. In 2012, the DiRAC facility was upgraded with a further £15 million capital investment from government (DiRAC-2).
The DiRAC facility provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. The science facilitated includes: using supercomputers to enable scientists to calculate what theories of the early universe predict and to test them against observations of the present universe; undertaking lattice field theory calculations whose primary aim is to increase the predictive power of the Standard Model of elementary particle interactions through numerical simulation of Quantum Chromodynamics; carrying out state-of-the-art cosmological simulations, including the large-scale distribution of dark matter, the formation of dark matter haloes, the formation and evolution of galaxies and clusters, the physics of the intergalactic medium and the properties of the intracluster gas.
This grant is to support the continued operation of the DiRAC facilities until 2017 to ensure that the UK remains one of the world-leaders of theoretical modelling in particle physics, astronomy and cosmology.
The DiRAC facility provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. The science facilitated includes: using supercomputers to enable scientists to calculate what theories of the early universe predict and to test them against observations of the present universe; undertaking lattice field theory calculations whose primary aim is to increase the predictive power of the Standard Model of elementary particle interactions through numerical simulation of Quantum Chromodynamics; carrying out state-of-the-art cosmological simulations, including the large-scale distribution of dark matter, the formation of dark matter haloes, the formation and evolution of galaxies and clusters, the physics of the intergalactic medium and the properties of the intracluster gas.
This grant is to support the continued operation of the DiRAC facilities until 2017 to ensure that the UK remains one of the world-leaders of theoretical modelling in particle physics, astronomy and cosmology.
Planned Impact
The high-performance computing applications supported by DiRAC typically involve new algorithms and implementations optimised for high energy efficiency which impose demands on computer architectures that the computing industry has found useful for hardware and system software design and testing.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
People |
ORCID iD |
| Richard Kenway (Principal Investigator) | |
| Peter Boyle (Co-Investigator) |
Publications
Srinivasan S
(2021)
Cosmological gravity on all scales. Part II. Model independent modified gravity N-body simulations
in Journal of Cosmology and Astroparticle Physics
Srinivasan S
(2021)
Cosmological gravity on all scales. Part II. Model independent modified gravity N-body simulations
in Journal of Cosmology and Astroparticle Physics
DeGraf C
(2020)
Cosmological simulations of massive black hole seeds: predictions for next-generation electromagnetic and gravitational wave observations
in Monthly Notices of the Royal Astronomical Society
Hands S
(2020)
Critical behavior in the single flavor Thirring model in 2 + 1 D
in Physical Review D
Anisman L
(2022)
Cross-sections for heavy atmospheres: H 2 O continuum
in Journal of Quantitative Spectroscopy and Radiative Transfer
Anisman L
(2022)
Cross-sections for heavy atmospheres: H 2 O continuum
in Journal of Quantitative Spectroscopy and Radiative Transfer
Jackson R
(2021)
Dark matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions
in Monthly Notices of the Royal Astronomical Society
Jackson R
(2021)
Dark matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions
in Monthly Notices of the Royal Astronomical Society
Ruiz-Bonilla S
(2022)
Dealing with density discontinuities in planetary SPH simulations
in Monthly Notices of the Royal Astronomical Society
Woss A
(2021)
Decays of an exotic 1 - + hybrid meson resonance in QCD
in Physical Review D
Woss A
(2021)
Decays of an exotic 1 - + hybrid meson resonance in QCD
in Physical Review D
Patsourakos S
(2020)
Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections
in Space Science Reviews
Fumagalli M
(2020)
Detecting neutral hydrogen at z ? 3 in large spectroscopic surveys of quasars
in Monthly Notices of the Royal Astronomical Society
Campargue A
(2020)
Detection of electric-quadrupole transitions in water vapour near 5.4 and 2.5 µm.
in Physical chemistry chemical physics : PCCP
Ray G
(2022)
Determination of hybrid charmonium meson masses
Hatton D
(2021)
Determination of m ¯ b / m ¯ c and m ¯ b from n f = 4 lattice QCD + QED
in Physical Review D
Hatton D
(2021)
Determination of m ¯ b / m ¯ c and m ¯ b from n f = 4 lattice QCD + QED
in Physical Review D
Shanahan PE
(2015)
Determination of the strange nucleon form factors.
in Physical review letters
Shanahan PE
(2015)
Determination of the strange nucleon form factors.
in Physical review letters
Grand R
(2021)
Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation
in Monthly Notices of the Royal Astronomical Society
Grand R
(2021)
Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation
in Monthly Notices of the Royal Astronomical Society
Sykes C
(2020)
Determining the primordial helium abundance and UV background using fluorescent emission in star-free dark matter haloes
in Monthly Notices of the Royal Astronomical Society
Gurung-López S
(2021)
Determining the systemic redshift of Lyman a emitters with neural networks and improving the measured large-scale clustering
in Monthly Notices of the Royal Astronomical Society
Gurung-López S
(2021)
Determining the systemic redshift of Lyman a emitters with neural networks and improving the measured large-scale clustering
in Monthly Notices of the Royal Astronomical Society
Reid J
(2020)
Determining whether the squashing factor, Q , would be a good indicator of reconnection in a resistive MHD experiment devoid of null points
in Astronomy & Astrophysics
Abbott R
(2020)
Direct C P violation and the ? I = 1 / 2 rule in K ? p p decay from the standard model
in Physical Review D
MacTaggart D
(2021)
Direct evidence that twisted flux tube emergence creates solar active regions.
in Nature communications
MacTaggart D
(2021)
Direct evidence that twisted flux tube emergence creates solar active regions.
in Nature communications
Chambers A
(2015)
Disconnected contributions to the spin of the nucleon
in Physical Review D
Changeat Q
(2022)
Disentangling atmospheric compositions of K2-18 b with next generation facilities.
in Experimental astronomy
Changeat Q
(2022)
Disentangling atmospheric compositions of K2-18 b with next generation facilities.
in Experimental astronomy
Raj A
(2021)
Disk Tearing: Implications for Black Hole Accretion and AGN Variability
in The Astrophysical Journal
Raj A
(2021)
Disk Tearing: Implications for Black Hole Accretion and AGN Variability
in The Astrophysical Journal
Raj A
(2021)
Disk Tearing: Numerical Investigation of Warped Disk Instability
in The Astrophysical Journal
Raj A
(2021)
Disk Tearing: Numerical Investigation of Warped Disk Instability
in The Astrophysical Journal
Cheung G
(2021)
DK I = 0, $$ D\overline{K} $$ I = 0, 1 scattering and the $$ {D}_{s0}^{\ast } $$(2317) from lattice QCD
in Journal of High Energy Physics
Gonzalez-Perez V
(2020)
Do model emission line galaxies live in filaments at z ~ 1?
in Monthly Notices of the Royal Astronomical Society
Wurster J
(2021)
Do we need non-ideal magnetohydrodynamic to model protostellar discs?
in Monthly Notices of the Royal Astronomical Society
Boyle Peter
(2016)
Domain Wall Charm Physics with Physical Pion Masses: Decay Constants, Bag and $?$ Parameters
in PoS
Boyle P.
(2015)
Domain wall charm physics with physical pION masses: Decay constants, bag and ? parameters
in Proceedings of Science
Hands S
(2015)
Domain wall fermions for planar physics
in Journal of High Energy Physics
Blum T
(2016)
Domain wall QCD with physical quark masses
in Physical Review D
Gronow S
(2021)
Double detonations of sub-M Ch CO white dwarfs: variations in Type Ia supernovae due to different core and He shell masses
in Astronomy & Astrophysics
Gronow S
(2021)
Double detonations of sub-M Ch CO white dwarfs: variations in Type Ia supernovae due to different core and He shell masses
in Astronomy & Astrophysics
Collins C
(2022)
Double detonations: variations in Type Ia supernovae due to different core and He shell masses - II. Synthetic observables
in Monthly Notices of the Royal Astronomical Society
Hughes D
(2021)
Double-diffusive Magnetic Layering
in The Astrophysical Journal
Hughes D
(2021)
Double-diffusive Magnetic Layering
in The Astrophysical Journal
| Description | In December 2009, the STFC Facility, DiRAC, was established to provide distributed High Performance Computing (HPC) services for theoretical modelling and HPC-based research in particle physics, astronomy and cosmology. DiRAC provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. This grant funds the continued operation of the 1.3Pflop/s Blue Gene/Q system at the University of Edinburgh, which was co-developed by Peter Boyle (University of Edinburgh) and IBM to run with high energy efficiency for months at a time on a single problem to solve some of the most complex problems in physics, particularly the strong interactions of quarks and gluons. The DiRAC Facility supports over 250 active researchers at 27 UK HEIs. This includes the research projects of 100 funded research staff (PDRAs and Research Fellows), over 50 post-graduate projects, and £1.6M of funded research grants. |
| Exploitation Route | Theoretical results obtained input to a range of experimental programmes aiming to increase our understanding of Nature. Algorithms and software developed provide input to computer design. |
| Sectors | Digital/Communication/Information Technologies (including Software) |
| URL | http://dirac.ac.uk/ |
| Description | Intel IPAG QCD codesign project |
| Organisation | Intel Corporation |
| Department | Intel Corporation (Jones Farm) |
| Country | United States |
| Sector | Private |
| PI Contribution | We have collaborated with Intel corporation since 2014 with $720k of total direct funding, starting initially as an Intel parallel computing centre, and expanding to direct close collaboration with Intel Pathfinding and Architecture Group. |
| Collaborator Contribution | We have performed detailed optimisation of QCD codes (Wilson, Domain Wall, Staggered) on Intel many core architectures. We have investigated the memory system and interconnect performance, particularly on Intel's latest interconnect hardware called Omnipath. We found serious performance issues and worked with Intel to plan a solution and this has been verified and is available as beta software. It will reach general availability in the Intel MPI 2019 release, and allow threaded concurrent communications in MPI for the first time. A joint paper on the resolution to this was written with the Intel MPI team, and the application of the same QCD programming techniques to machine learning gradient reduction was applied in the paper to the Baidu Research all reduce library, demonstrating a 10x gain for this critical step in machine learning in clustered environments. We are also working with Intel verifying future architectures that will deliver the exascale performance in 2021. |
| Impact | We have performed detailed optimisation of QCD codes (Wilson, Domain Wall, Staggered) on Intel many core architectures. We have investigated the memory system and interconnect performance, particularly on Intel's latest interconnect hardware called Omnipath. We found serious performance issues and worked with Intel to plan a solution and this has been verified and is available as beta software. It will reach general availability in the Intel MPI 2019 release, and allow threaded concurrent communications in MPI for the first time. A joint paper on the resolution to this was written with the Intel MPI team, and the application of the same QCD programming techniques to machine learning gradient reduction was applied in the paper to the Baidu Research all reduce library, demonstrating a 10x gain for this critical step in machine learning in clustered environments. This collaboration has been renewed annually in 2018, 2019, 2020. Two DiRAC RSE's were hired by Intel to work on the Turing collaboration. |
| Start Year | 2016 |