UK Biobank (core renewal)
Lead Research Organisation:
UK Biobank
Department Name: UNLISTED
Abstract
UK Biobank is supported by The Wellcome Trust, The National Institute of Health Research, The Medical Research Council, The British Heart Foundation and Cancer Research UK. The figures presented on this record represent the Medical Research Council funding contribution only with some additional UKRI Infrastructure funds in addition.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
Technical Summary
The UK Biobank resource has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. There are now sufficient numbers of incident cases of the commoner conditions to support extensive and powerful research into their determinants.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
Organisations
- UK Biobank (Lead Research Organisation)
- AbbVie Inc (Collaboration)
- AstraZeneca (Collaboration)
- Alnylam Pharmaceuticals (Collaboration)
- Regeneron Pharmaceuticals, Inc. (Collaboration)
- Pfizer Inc (Collaboration)
- Takeda Pharmaceutical Company (Collaboration)
- Bristol-Myers Squibb (Collaboration)
- Biogen Idec (Collaboration)
- GlaxoSmithKline (GSK) (Collaboration)
People |
ORCID iD |
| Rory Collins (Principal Investigator) |
Publications
Li FR
(2023)
Long-term exposure to air pollution and incident non-alcoholic fatty liver disease and cirrhosis: A cohort study.
in Liver international : official journal of the International Association for the Study of the Liver
Meulmeester FL
(2023)
The association of measures of body shape and adiposity with incidence of cardiometabolic disease from an ageing perspective.
in GeroScience
Yuan C
(2023)
Vitamin D Levels and Risk of Male Factor Infertility: A Mendelian Randomization Study.
in The world journal of men's health
Akhtari FS
(2023)
Questionnaire-Based Polyexposure Assessment Outperforms Polygenic Scores for Classification of Type 2 Diabetes in a Multiancestry Cohort.
in Diabetes care
He J
(2023)
Ulcerative colitis increases risk of hypertension in a UK biobank cohort study.
in United European gastroenterology journal
Liang YY
(2023)
Association of Social Isolation and Loneliness With Incident Heart Failure in a Population-Based Cohort Study.
in JACC. Heart failure
Chen Y
(2023)
Genetic prediction of male pattern baldness based on large independent datasets.
in European journal of human genetics : EJHG
Henderson LM
(2023)
Stronger Associations Between Sleep and Mental Health in Adults with Autism: A UK Biobank Study.
in Journal of autism and developmental disorders
Vlasschaert C
(2023)
A practical approach to curate clonal hematopoiesis of indeterminate potential in human genetic data sets.
in Blood
Dodds RM
(2023)
Simple approaches to characterising multiple long-term conditions (multimorbidity) and rates of emergency hospital admission: Findings from 495,465 UK Biobank participants.
in Journal of internal medicine
Cao Z
(2023)
Causal association of leisure sedentary behavior with arthritis: A Mendelian randomization analysis.
in Seminars in arthritis and rheumatism
Holmes MV
(2024)
PCSK9 genetic variants and risk of vascular and non-vascular diseases in Chinese and UK populations.
in European journal of preventive cardiology
He R
(2024)
DeLIVR: a deep learning approach to IV regression for testing nonlinear causal effects in transcriptome-wide association studies.
in Biostatistics (Oxford, England)
Konigorski S
(2024)
Identification of novel genes whose expression in adipose tissue affects body fat mass and distribution: an RNA-Seq and Mendelian Randomization study.
in European journal of human genetics : EJHG
Judge PK
(2024)
The potential for improving cardio-renal outcomes in chronic kidney disease with the aldosterone synthase inhibitor vicadrostat (BI 690517): a rationale for the EASi-KIDNEY trial.
in Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
Yang L
(2024)
Genetic association studies using disease liabilities from deep neural networks.
in medRxiv : the preprint server for health sciences
Zhu D
(2024)
Blood Pressure, eGFR, and Kidney Mortality in Mexico: A Prospective Study of 150,000 Adults FR-PO1087
in Journal of the American Society of Nephrology
Zhang Y
(2024)
Higher ratio of plasma omega-6/omega-3 fatty acids is associated with greater risk of all-cause, cancer, and cardiovascular mortality: a population-based cohort study in UK Biobank.
in medRxiv : the preprint server for health sciences
Ramachandran AK
(2024)
Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review.
in CNS & neurological disorders drug targets
| Description | Impact of clinically silent atrial fibrillation on cerebrovascular disease and cognitive decline in the UK Biobank Imaging Cohort |
| Amount | £2,474,260 (GBP) |
| Funding ID | RG/18/6/33576 |
| Organisation | British Heart Foundation (BHF) |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 06/2019 |
| End | 06/2024 |
| Description | UK Biobank - Data Analytics Platform |
| Amount | £20,000,000 (GBP) |
| Organisation | Wellcome Trust |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - The Repeat Imaging Project |
| Amount | £2,500,000 (GBP) |
| Funding ID | R39738/CN039 |
| Organisation | MRC Dementias Platform UK |
| Sector | Academic/University |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - Whole genome sequencing of 50,000 UKB participants |
| Amount | £30,000,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 03/2020 |
| Description | UK Biobank- Expansion of the UKB imaging to a 4th centre and repeat imaging assessment of 10,000 participants |
| Amount | £8,500,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 12/2022 |
| Description | Biobank Enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Biobank Enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Genetic enhancement |
| Organisation | AbbVie Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Alnylam Pharmaceuticals |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | AstraZeneca |
| Country | United Kingdom |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Biogen Idec |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Bristol-Myers Squibb |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Pfizer Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Takeda Pharmaceutical Company |
| Department | Takeda Pharmaceuticals U.S.A., Inc. (TPUSA) |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | UK Biobank GP linkage |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | UK Biobank event for the General Practice Data for Planing and Research programme (GP linkage). 1,200 attendees |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank Scientific Conference |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Public/other audiences |
| Results and Impact | The UK Biobank Scientific Symposium included presentations about the successes and future plans of the UK Biobank. It took place on 21 June 2018 in London |
| Year(s) Of Engagement Activity | 2018 |
| Description | UK Biobank Scientific Conference 2021 |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | The UK Biobank Scientific Conference in 2021 had 3,000 participants from the research community, professional practitioners, media, study particiapnts and other partners. |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank participant imaging event |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UK Biobank for participants of the imaging work |
| Year(s) Of Engagement Activity | 2021 |
| Description | UKBiobank participant events - 2014 - 2019 |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UKB Biobank participants regularly attend events aimed at informing them about the work being undertaken with their data. Usually, the events last a few hours and include an overview from the chief scientist and two talks from scientists that have used UKB data. From 2014 - 2020 over 4,000 participants have taken part in events in Edinburgh (4), Manchester (4), Nottingham, Leeds, Cardiff (2), Newcastle (5), Glasgow (2), Bristol (2) and Reading(4). They are often over-subscribed and participants leave these events wishing to seek more information and support he programme in new ways (EG in imaging, genome sequencing) |
| Year(s) Of Engagement Activity | 2014,2015,2016,2017,2018,2019 |
| URL | http://www.ukbiobank.ac.uk |