Edinburgh DiRAC Resource Grant
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
DiRAC (Distributed Research utilising Advanced Computing) is the integrated supercomputing facility for theoretical modelling and HPC-based research in particle physics, nuclear physics, astronomy and cosmology, areas in which the UK is world-leading. It was funded as a result of investment of £12.32 million, from the Government's Large Facilities Capital Fund, together with investment from STFC and from universities. In 2012, the DiRAC facility was upgraded with a further £15 million capital investment from government (DiRAC-2).
The DiRAC facility provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. The science facilitated includes: using supercomputers to enable scientists to calculate what theories of the early universe predict and to test them against observations of the present universe; undertaking lattice field theory calculations whose primary aim is to increase the predictive power of the Standard Model of elementary particle interactions through numerical simulation of Quantum Chromodynamics; carrying out state-of-the-art cosmological simulations, including the large-scale distribution of dark matter, the formation of dark matter haloes, the formation and evolution of galaxies and clusters, the physics of the intergalactic medium and the properties of the intracluster gas.
This grant is to support the continued operation of the DiRAC facilities until 2017 to ensure that the UK remains one of the world-leaders of theoretical modelling in particle physics, astronomy and cosmology.
The DiRAC facility provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. The science facilitated includes: using supercomputers to enable scientists to calculate what theories of the early universe predict and to test them against observations of the present universe; undertaking lattice field theory calculations whose primary aim is to increase the predictive power of the Standard Model of elementary particle interactions through numerical simulation of Quantum Chromodynamics; carrying out state-of-the-art cosmological simulations, including the large-scale distribution of dark matter, the formation of dark matter haloes, the formation and evolution of galaxies and clusters, the physics of the intergalactic medium and the properties of the intracluster gas.
This grant is to support the continued operation of the DiRAC facilities until 2017 to ensure that the UK remains one of the world-leaders of theoretical modelling in particle physics, astronomy and cosmology.
Planned Impact
The high-performance computing applications supported by DiRAC typically involve new algorithms and implementations optimised for high energy efficiency which impose demands on computer architectures that the computing industry has found useful for hardware and system software design and testing.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
DiRAC researchers have on-going collaborations with computing companies that maintain this strong connection between the scientific goals of the DiRAC Consortium and the development of new computing technologies that drive the commercial high-performance computing market, with economic benefits to the companies involved and more powerful computing capabilities available to other application areas including many that address socio-economic challenges.
People |
ORCID iD |
| Richard Kenway (Principal Investigator) | |
| Peter Boyle (Co-Investigator) |
Publications
Grand R
(2020)
The biggest splash
in Monthly Notices of the Royal Astronomical Society
Pfeifer S
(2020)
The BAHAMAS project: effects of dynamical dark energy on large-scale structure
in Monthly Notices of the Royal Astronomical Society
McCarthy I
(2020)
The imprint of dark subhaloes on the circumgalactic medium
in Monthly Notices of the Royal Astronomical Society
Young A
(2021)
Chemical signatures of a warped protoplanetary disc
in Monthly Notices of the Royal Astronomical Society
Richings A
(2021)
Unravelling the physics of multiphase AGN winds through emission line tracers
in Monthly Notices of the Royal Astronomical Society
Rosotti G
(2020)
Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary-disc interaction and a vertical temperature gradient
in Monthly Notices of the Royal Astronomical Society
Cao K
(2021)
Studying galaxy cluster morphological metrics with mock-X
in Monthly Notices of the Royal Astronomical Society
Mukherjee S
(2021)
SEAGLE - II. Constraints on feedback models in galaxy formation from massive early-type strong-lens galaxies
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
A general framework to test gravity using galaxy clusters III: observable-mass scaling relations in f ( R ) gravity
in Monthly Notices of the Royal Astronomical Society
Haworth T
(2021)
Warm millimetre dust in protoplanetary discs near massive stars
in Monthly Notices of the Royal Astronomical Society
Bennett J
(2020)
Resolving shocks and filaments in galaxy formation simulations: effects on gas properties and star formation in the circumgalactic medium
in Monthly Notices of the Royal Astronomical Society
Li Y
(2022)
Non-linear reconstruction of features in the primordial power spectrum from large-scale structure
in Monthly Notices of the Royal Astronomical Society
Wijers N
(2022)
The warm-hot circumgalactic medium around EAGLE-simulation galaxies and its detection prospects with X-ray-line emission
in Monthly Notices of the Royal Astronomical Society
Matsumoto J
(2021)
Magnetic inhibition of the recollimation instability in relativistic jets
in Monthly Notices of the Royal Astronomical Society
Jackson R
(2021)
Dark matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions
in Monthly Notices of the Royal Astronomical Society
Huško F
(2022)
Spin-driven jet feedback in idealized simulations of galaxy groups and clusters
in Monthly Notices of the Royal Astronomical Society
Richings A
(2022)
The effects of local stellar radiation and dust depletion on non-equilibrium interstellar chemistry
in Monthly Notices of the Royal Astronomical Society
Tissera P
(2022)
The evolution of the oxygen abundance gradients in star-forming galaxies in the eagle simulations
in Monthly Notices of the Royal Astronomical Society
Astoul A
(2022)
The effects of non-linearities on tidal flows in the convective envelopes of rotating stars and planets in exoplanetary systems
in Monthly Notices of the Royal Astronomical Society
Baugh C
(2022)
Modelling emission lines in star-forming galaxies
in Monthly Notices of the Royal Astronomical Society
Ragusa E
(2021)
Circumbinary and circumstellar discs around the eccentric binary IRAS 04158+2805 - a testbed for binary-disc interaction
in Monthly Notices of the Royal Astronomical Society
Liow K
(2020)
The role of collision speed, cloud density, and turbulence in the formation of young massive clusters via cloud-cloud collisions
in Monthly Notices of the Royal Astronomical Society
Davies C
(2022)
Cosmological forecasts with the clustering of weak lensing peaks
in Monthly Notices of the Royal Astronomical Society
Baugh C
(2020)
Sensitivity analysis of a galaxy formation model
in Monthly Notices of the Royal Astronomical Society
Orkney M
(2021)
EDGE: two routes to dark matter core formation in ultra-faint dwarfs
in Monthly Notices of the Royal Astronomical Society
Hillier A
(2023)
The role of cooling induced by mixing in the mass and energy cycles of the solar atmosphere
in Monthly Notices of the Royal Astronomical Society
Scardoni C
(2022)
Inward and outward migration of massive planets: moving towards a stalling radius
in Monthly Notices of the Royal Astronomical Society
Santos-Santos I
(2020)
Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves
in Monthly Notices of the Royal Astronomical Society
Suarez T
(2021)
Modelling intergalactic low ionization metal absorption line systems near the epoch of reionization
in Monthly Notices of the Royal Astronomical Society
Gurung-López S
(2019)
Lya emitters in a cosmological volume II: the impact of the intergalactic medium
in Monthly Notices of the Royal Astronomical Society
Young A
(2021)
Chemical signatures of a warped protoplanetary disc
in Monthly Notices of the Royal Astronomical Society
Hernández-Aguayo C
(2021)
Galaxy formation in the brane world I: overview and first results
in Monthly Notices of the Royal Astronomical Society
Baxter E
(2021)
The correlation of high-redshift galaxies with the thermal Sunyaev-Zel'dovich effect traces reionization
in Monthly Notices of the Royal Astronomical Society
Yurchenko S
(2020)
ExoMol molecular line lists - XXXVII. Spectra of acetylene
in Monthly Notices of the Royal Astronomical Society
Bartlett D
(2021)
Spatially offset black holes in the Horizon-AGN simulation and comparison to observations
in Monthly Notices of the Royal Astronomical Society
Reid J
(2021)
Linking computational models to follow the evolution of heated coronal plasma
in Monthly Notices of the Royal Astronomical Society
Whitworth D
(2022)
Is the molecular KS relationship universal down to low metallicities?
in Monthly Notices of the Royal Astronomical Society
Young A
(2022)
Characteristics of small protoplanetary disc warps in kinematic observations
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2021)
Vector modes in ?CDM: the gravitomagnetic potential in dark matter haloes from relativistic N -body simulations
in Monthly Notices of the Royal Astronomical Society
Pichon C
(2020)
And yet it flips: connecting galactic spin and the cosmic web
in Monthly Notices of the Royal Astronomical Society
Grebel E
(2020)
The mass fraction of halo stars contributed by the disruption of globular clusters in the E-MOSAICS simulations
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2021)
Vector modes in ?CDM: the gravitomagnetic potential in dark matter haloes from relativistic N -body simulations
in Monthly Notices of the Royal Astronomical Society
Collins C
(2022)
Double detonations: variations in Type Ia supernovae due to different core and He shell masses - II. Synthetic observables
in Monthly Notices of the Royal Astronomical Society
Weinberger L
(2020)
Probing delayed-end reionization histories with the 21-cm LAE cross-power spectrum
in Monthly Notices of the Royal Astronomical Society
Lovell C
(2021)
First Light And Reionization Epoch Simulations (FLARES) - I. Environmental dependence of high-redshift galaxy evolution
in Monthly Notices of the Royal Astronomical Society
Hou J
(2021)
How well is angular momentum accretion modelled in semi-analytic galaxy formation models?
in Monthly Notices of the Royal Astronomical Society
Bahé Y
(2021)
Strongly lensed cluster substructures are not in tension with ?CDM
in Monthly Notices of the Royal Astronomical Society
Thomas N
(2021)
The radio galaxy population in the simba simulations
in Monthly Notices of the Royal Astronomical Society
Correa C
(2020)
The dependence of the galaxy stellar-to-halo mass relation on galaxy morphology
in Monthly Notices of the Royal Astronomical Society
Genina A
(2022)
Can tides explain the low dark matter density in Fornax?
in Monthly Notices of the Royal Astronomical Society
| Description | In December 2009, the STFC Facility, DiRAC, was established to provide distributed High Performance Computing (HPC) services for theoretical modelling and HPC-based research in particle physics, astronomy and cosmology. DiRAC provides a variety of computer architectures, matching machine architecture to the algorithm design and requirements of the research problems to be solved. This grant funds the continued operation of the 1.3Pflop/s Blue Gene/Q system at the University of Edinburgh, which was co-developed by Peter Boyle (University of Edinburgh) and IBM to run with high energy efficiency for months at a time on a single problem to solve some of the most complex problems in physics, particularly the strong interactions of quarks and gluons. The DiRAC Facility supports over 250 active researchers at 27 UK HEIs. This includes the research projects of 100 funded research staff (PDRAs and Research Fellows), over 50 post-graduate projects, and £1.6M of funded research grants. |
| Exploitation Route | Theoretical results obtained input to a range of experimental programmes aiming to increase our understanding of Nature. Algorithms and software developed provide input to computer design. |
| Sectors | Digital/Communication/Information Technologies (including Software) |
| URL | http://dirac.ac.uk/ |
| Description | Intel IPAG QCD codesign project |
| Organisation | Intel Corporation |
| Department | Intel Corporation (Jones Farm) |
| Country | United States |
| Sector | Private |
| PI Contribution | We have collaborated with Intel corporation since 2014 with $720k of total direct funding, starting initially as an Intel parallel computing centre, and expanding to direct close collaboration with Intel Pathfinding and Architecture Group. |
| Collaborator Contribution | We have performed detailed optimisation of QCD codes (Wilson, Domain Wall, Staggered) on Intel many core architectures. We have investigated the memory system and interconnect performance, particularly on Intel's latest interconnect hardware called Omnipath. We found serious performance issues and worked with Intel to plan a solution and this has been verified and is available as beta software. It will reach general availability in the Intel MPI 2019 release, and allow threaded concurrent communications in MPI for the first time. A joint paper on the resolution to this was written with the Intel MPI team, and the application of the same QCD programming techniques to machine learning gradient reduction was applied in the paper to the Baidu Research all reduce library, demonstrating a 10x gain for this critical step in machine learning in clustered environments. We are also working with Intel verifying future architectures that will deliver the exascale performance in 2021. |
| Impact | We have performed detailed optimisation of QCD codes (Wilson, Domain Wall, Staggered) on Intel many core architectures. We have investigated the memory system and interconnect performance, particularly on Intel's latest interconnect hardware called Omnipath. We found serious performance issues and worked with Intel to plan a solution and this has been verified and is available as beta software. It will reach general availability in the Intel MPI 2019 release, and allow threaded concurrent communications in MPI for the first time. A joint paper on the resolution to this was written with the Intel MPI team, and the application of the same QCD programming techniques to machine learning gradient reduction was applied in the paper to the Baidu Research all reduce library, demonstrating a 10x gain for this critical step in machine learning in clustered environments. This collaboration has been renewed annually in 2018, 2019, 2020. Two DiRAC RSE's were hired by Intel to work on the Turing collaboration. |
| Start Year | 2016 |