UK Biobank (core renewal)
Lead Research Organisation:
UK Biobank
Department Name: UNLISTED
Abstract
UK Biobank is supported by The Wellcome Trust, The National Institute of Health Research, The Medical Research Council, The British Heart Foundation and Cancer Research UK. The figures presented on this record represent the Medical Research Council funding contribution only with some additional UKRI Infrastructure funds in addition.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
UK Biobank is a prospective study of 500,000 men and women aged 40-69 years at the point of recruitment (2006-10). The study has collected extensive phenotypic and genotypic detail about its participants, including data from questionnaires, physical measures, sample assays, accelerometery, imaging, genome-wide genotyping and long-term longitudinal follow-up for a wide range of health-related outcomes. The resource is regularly augmented with additional data and is available to academic or commercial researchers world-wide to use for any type of health-related research that is in the public interest. It has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. The ongoing identification and adjudication of increasing numbers of incident cases of the commoner conditions in the resource will support extensive and powerful research into their determinants and the range of diseases that can be studied reliably will widen as the numbers of incident events of different types increase during follow-up over the next 5-10 year period. As a result, UK Biobank provides researchers from around the world with greater opportunities to better understand early disease stages and their diagnosis, and can support the development of new treatments for diseases of mid-to-later life.
Technical Summary
The UK Biobank resource has been established primarily for the conduct of prospective studies investigating the relevance of a wide range of exposures to health outcomes that occur during long-term follow-up. There are now sufficient numbers of incident cases of the commoner conditions to support extensive and powerful research into their determinants.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
There is regular augmentation of UK Biobank’s capability for effective use as a prospective resource by the widest possible range of researchers. This activity has included: streamlining resource access management systems; imaging assessments; an agile response to the SARS-2 Covid pandemic; ‘omics; whole genome sequencing and turning biological samples into genotypic and biomarker data to make the resource more accessible to researchers studying a wide range of different conditions.
During the next few years, it is intended to develop UK Biobank as a UK national infrastructure and the resource will move to new premises at the University of Manchester where sample throughput will be accelerated with new robotics and freezer systems, making more large scale studies possible. UK Biobank will make increasing amounts of genotype and biomarker data available. It will seek to extend cohort-wide record linkage to primary care health; develop other linkages relevant to health; complete imaging assessments on close to 100,000 participants, including repeat imaging on a subset; develop and implement further enhancements (such as metabolomics) and introduce changes relating to participant involvement and to address equality diversity and inclusion. Communications will be expanded to a wider audience to help ensure that researchers from around the world are well informed about UK Biobank’s enhanced capabilities in order to maximise suitable use of the resource over the next few years.
Organisations
- UK Biobank (Lead Research Organisation)
- AbbVie Inc (Collaboration)
- AstraZeneca (Collaboration)
- Alnylam Pharmaceuticals (Collaboration)
- Regeneron Pharmaceuticals, Inc. (Collaboration)
- Pfizer Inc (Collaboration)
- Takeda Pharmaceutical Company (Collaboration)
- Bristol-Myers Squibb (Collaboration)
- Biogen Idec (Collaboration)
- GlaxoSmithKline (GSK) (Collaboration)
People |
ORCID iD |
| Rory Collins (Principal Investigator) |
Publications
Chen BB
(2022)
Putative Candidate Drug Targets for Sarcopenia-Related Traits Identified Through Mendelian Randomization Analysis of the Blood Proteome.
in Frontiers in genetics
Chen C
(2020)
Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images.
in Frontiers in cardiovascular medicine
Chen DC
(2023)
Differential Associations of Cystatin C Versus Creatinine-Based Kidney Function With Risks of Cardiovascular Event and Mortality Among South Asian Individuals in the UK Biobank.
in Journal of the American Heart Association
Chen G
(2022)
Associations between conjunctivitis and ambient PM2.5 and physical activity: A nationwide prospective cohort study.
in The Science of the total environment
Chen GC
(2023)
The Association Between Exposure to Air Pollution and Dementia Incidence: The Modifying Effect of Smoking.
in The journals of gerontology. Series A, Biological sciences and medical sciences
Chen H
(2021)
No Causal Association Between Adiponectin and the Risk of Rheumatoid Arthritis: A Mendelian Randomization Study.
in Frontiers in genetics
Chen H
(2022)
Assessing Causal Associations of Atopic Dermatitis With Heart Failure and Other Cardiovascular Outcomes: A Mendelian Randomization Study.
in Frontiers in cardiovascular medicine
Chen H
(2022)
The Association Between Vitamin C and Cancer: A Two-Sample Mendelian Randomization Study.
in Frontiers in genetics
Chen H
(2022)
Meat consumption and all-cause mortality in 5763 patients with inflammatory bowel disease: A retrospective cohort study.
in EClinicalMedicine
Chen H
(2023)
Age- and sex-specific modifiable risk factor profiles of dementia: evidence from the UK Biobank.
in European journal of epidemiology
Chen HH
(2021)
Host genetic effects in pneumonia.
in American journal of human genetics
Chen J
(2023)
Antioxidants, minerals and vitamins in relation to Crohn's disease and ulcerative colitis: A Mendelian randomization study.
in Alimentary pharmacology & therapeutics
Chen J
(2022)
Sleep pattern, healthy lifestyle and colorectal cancer incidence.
in Scientific reports
Chen J
(2021)
Association of Sleep Traits and Heel Bone Mineral Density: Observational and Mendelian Randomization Studies.
in Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Chen J
(2021)
Irritable bowel syndrome and migraine: evidence from Mendelian randomization analysis in the UK Biobank.
in Expert review of gastroenterology & hepatology
Chen J
(2023)
Intake of Ultra-processed Foods Is Associated with an Increased Risk of Crohn's Disease: A Cross-sectional and Prospective Analysis of 187 154 Participants in the UK Biobank.
in Journal of Crohn's & colitis
Chen J
(2022)
Associations between inflammatory bowel disease, social isolation, and mortality: evidence from a longitudinal cohort study.
in Therapeutic advances in gastroenterology
Chen J
(2023)
Plasma phospholipid arachidonic acid in relation to non-alcoholic fatty liver disease: Mendelian randomization study.
in Nutrition (Burbank, Los Angeles County, Calif.)
Chen L
(2022)
Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke.
in Nature communications
Chen L
(2023)
Diet-derived antioxidants and nonalcoholic fatty liver disease: a Mendelian randomization study.
in Hepatology international
Chen L
(2022)
No causal effect of tea consumption on cardiovascular diseases: A two-sample Mendelian randomization study.
in Frontiers in cardiovascular medicine
Chen L
(2021)
Association of chronic musculoskeletal pain with mortality among UK adults: A population-based cohort study with mediation analysis
in eClinicalMedicine
Chen L
(2022)
Associations of muscle mass and grip strength with severe NAFLD: A prospective study of 333,295 UK Biobank participants.
in Journal of hepatology
Chen L
(2023)
Physical frailty, adherence to ideal cardiovascular health and risk of cardiovascular disease: a prospective cohort study.
in Age and ageing
Chen M
(2022)
Genetically proxied inhibition of tumor necrosis factor and the risk of colorectal cancer: A drug-target mendelian randomization study.
in Frontiers in pharmacology
Chen N
(2022)
Exposome approach for identifying modifiable factors for the prevention of colorectal cancer.
in Scientific reports
Chen Q
(2022)
Effect of visceral adipose tissue mass on coronary artery disease and heart failure: A Mendelian randomization study.
in International journal of obesity (2005)
Chen S
(2022)
Causal Association Between Tea Consumption and Bone Health: A Mendelian Randomization Study.
in Frontiers in nutrition
Chen SJ
(2022)
Association of circadian rhythms with brain disorder incidents: a prospective cohort study of 72242 participants.
in Translational psychiatry
Chen TT
(2022)
Causal influence of dietary habits on the risk of major depressive disorder: A diet-wide Mendelian randomization analysis.
in Journal of affective disorders
Chen VL
(2020)
Genetic variants that associate with cirrhosis have pleiotropic effects on human traits.
in Liver international : official journal of the International Association for the Study of the Liver
Chen W
(2022)
The influence of childhood asthma on adult height: evidence from the UK Biobank.
in BMC medicine
Chen W
(2022)
Beef intake and risk of rheumatoid arthritis: Insights from a cross-sectional study and two-sample Mendelian randomization.
in Frontiers in nutrition
Chen W
(2022)
Genetic predispositions to psychiatric disorders and the risk of COVID-19.
in BMC medicine
Chen X
(2022)
Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: a Mendelian randomization study.
in Journal of translational medicine
Chen X
(2022)
Causal relationship between 14 site-specific cancers and venous thromboembolism
in Cancer Innovation
Chen X
(2022)
Associations of ultra-processed food consumption with cardiovascular disease and all-cause mortality: UK Biobank.
in European journal of public health
| Description | Impact of clinically silent atrial fibrillation on cerebrovascular disease and cognitive decline in the UK Biobank Imaging Cohort |
| Amount | £2,474,260 (GBP) |
| Funding ID | RG/18/6/33576 |
| Organisation | British Heart Foundation (BHF) |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 06/2019 |
| End | 06/2024 |
| Description | UK Biobank - Data Analytics Platform |
| Amount | £20,000,000 (GBP) |
| Organisation | Wellcome Trust |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - The Repeat Imaging Project |
| Amount | £2,500,000 (GBP) |
| Funding ID | R39738/CN039 |
| Organisation | MRC Dementias Platform UK |
| Sector | Academic/University |
| Country | United Kingdom |
| Start | 03/2019 |
| End | 01/2023 |
| Description | UK Biobank - Whole genome sequencing of 50,000 UKB participants |
| Amount | £30,000,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 03/2020 |
| Description | UK Biobank- Expansion of the UKB imaging to a 4th centre and repeat imaging assessment of 10,000 participants |
| Amount | £8,500,000 (GBP) |
| Organisation | Medical Research Council (MRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 03/2018 |
| End | 12/2022 |
| Description | Biobank Enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Biobank Enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | exome sequencing of 50,000 participants |
| Collaborator Contribution | creating vast amounts of genetic data to be used by researchers accessing UKBiobank |
| Impact | exome data |
| Start Year | 2017 |
| Description | Genetic enhancement |
| Organisation | AbbVie Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Alnylam Pharmaceuticals |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | AstraZeneca |
| Country | United Kingdom |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Biogen Idec |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Bristol-Myers Squibb |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | GlaxoSmithKline (GSK) |
| Country | Global |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Pfizer Inc |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Regeneron Pharmaceuticals, Inc. |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | Genetic enhancement |
| Organisation | Takeda Pharmaceutical Company |
| Department | Takeda Pharmaceuticals U.S.A., Inc. (TPUSA) |
| Country | United States |
| Sector | Private |
| PI Contribution | Partnership with Regeneron and GSK to complete exome sequencing of 450,000 UKBiobank participants |
| Collaborator Contribution | The exome sequence of 50,000 UKBiobank particpants were generated through a partnership between UKB, Regeneron and GSK. Regeneron is leading a consortium of biopharma (listed) to complete exome sequencing of the remaining 450,000 participants by 2020. GSK has committed an additional £40 million investment to initiatives, such as UKB, that harness advances in genetic research in the development of new medicines. |
| Impact | The first tranche of data have been incorporated back into the UKBiobank resource for the global health community to use. |
| Start Year | 2018 |
| Description | UK Biobank GP linkage |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | UK Biobank event for the General Practice Data for Planing and Research programme (GP linkage). 1,200 attendees |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank Scientific Conference |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Public/other audiences |
| Results and Impact | The UK Biobank Scientific Symposium included presentations about the successes and future plans of the UK Biobank. It took place on 21 June 2018 in London |
| Year(s) Of Engagement Activity | 2018 |
| Description | UK Biobank Scientific Conference 2021 |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Professional Practitioners |
| Results and Impact | The UK Biobank Scientific Conference in 2021 had 3,000 participants from the research community, professional practitioners, media, study particiapnts and other partners. |
| Year(s) Of Engagement Activity | 2021 |
| Description | UK Biobank participant imaging event |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UK Biobank for participants of the imaging work |
| Year(s) Of Engagement Activity | 2021 |
| Description | UKBiobank participant events - 2014 - 2019 |
| Form Of Engagement Activity | Participation in an activity, workshop or similar |
| Part Of Official Scheme? | No |
| Geographic Reach | National |
| Primary Audience | Study participants or study members |
| Results and Impact | UKB Biobank participants regularly attend events aimed at informing them about the work being undertaken with their data. Usually, the events last a few hours and include an overview from the chief scientist and two talks from scientists that have used UKB data. From 2014 - 2020 over 4,000 participants have taken part in events in Edinburgh (4), Manchester (4), Nottingham, Leeds, Cardiff (2), Newcastle (5), Glasgow (2), Bristol (2) and Reading(4). They are often over-subscribed and participants leave these events wishing to seek more information and support he programme in new ways (EG in imaging, genome sequencing) |
| Year(s) Of Engagement Activity | 2014,2015,2016,2017,2018,2019 |
| URL | http://www.ukbiobank.ac.uk |