Charting S-nitrosothiol function during the plant defence response

Lead Research Organisation: University of Edinburgh
Department Name: Inst for Molecular Plant Science

Abstract

Plant diseases are responsible for about ~25% of total world crop losses per annum. Therefore, plant disease resistance is an important trait to develop in crop plants. Fortunately, plants have evolved a relatively robust defence system to protect themselves from diseases caused by micro-organisms. Understanding how this defence system works will lead to crops that are able to resist microbial infection more effectively, this is especially important at this time of food shortages. Previously, we have demonstrated that S-nitrosylation is a molecular switch that controls the expression of disease resistance against a broad spectrum of potential microbial pathogens in Arabidopsis, a model plant species. Increased S-nitrosylation leads to pathogen susceptibility while decreased S-nitrosylation results in pathogen resistance. Therefore, understanding how plants can regulate the extent of this protein modification may provide us with insights to develop disease resistant crops. By employing a genetics-based strategy, we have identified three genes, SPL1, SPL2 and SPL3 that appear to control the levels of S-nitrosylation during the plant defence response. Utilising standard molecular biology procedures we cloned SPL1 and found it encoded a protein that mediated ubiquintination, another key mechanism to regulate cellular processes in plants. Also, SPL1 contained motifs that suggested it physically interacted with a number of other proteins. Using a variety of molecular and biochemical experimental procedures we will characterise the role of SPL1 in the regulation of S-nitrosylation during the establishment of disease resistance. In a complementary approach, we utilised technology that enabled us to monitor the expression of all known genes in Arabidopsis plant lines that exhibit either increased or decreased amounts of S-nitrosylation. In this way we have identified genes that are directly regulated by changes in the levels of S-nitrosothiols (SNOs), the products of S-nitrosylation. Loss-of-function mutations in one of these genes, SRG1, which encodes a zinc finger protein that controls gene expression, results in hypersensitivity to SNOs. Furthermore, SRG1 is S-nitrosylated. These findings suggest that SRG1 senses increasing SNO levels by becoming S-nitrosylated and then subsequently drives the expression of hitherto unidentified genes that protect plants against high levels of SNOs, termed nitrosative stress. By employing state-of-the-art genomics technologies we will identify the DNA binding sites of SRG1 and determine the consequences of this binding on the expression of adjacent genes / non-coding RNAs. We will also explore if prior S-nitrosylation of SRG1 is required to initiate this process. Collectively, this work will provide major insights how S-nitrosylation controls the expression of plant disease resistance. In the long term the results from this project may aid the development of disease resistant crops.

Technical Summary

Loss-of-function mutations in AtGSNOR1 result in increased S-nitrosothiol (SNO) levels in both naïve and pathogen challenged plants and compromise multiple modes of disease resistance. To explore the mechanisms underpinning SNO formation and turnover in plants, we carried out a forward genetic screen to identify suppressors of atgsnor1-3, a mutation that abolishes AtGSNOR1 function. Three activation tagged lines were identified in which atgsnor1-3-mediated enhanced disease susceptibility was suppressed, without constitutively activating defence responses. One of the corresponding tagged genes, SPL1, encodes a RING domain E3 ligase with ankyrin repeats and a leucine zipper. We will determine SPL1 function with particular reference to: which domains are required to suppress atgsnor1-3; its ability to act as an E3 ligase; how S-nitrosylation regulates E3 ligase activity and the biological implications of SNO-SRG1 formation. Previous gene expression profiling identified SNO regulated genes. Reverse genetics revealed that mutations in SNO Regulated Gene 1 (SRG1), a predicted zinc finger transcription factor (ZFTF), resulted in SNO hypersensitivity and compromised AtGSNOR1 expression. SRG1 was also S-nitrosylated during nitrosative stress. Together, these findings are consistent with SRG1 operating as a SNO sensor and regulator. By employing an Illumina Solexa chromatin immunoprecipitation (ChIP)-sequencing (Seq) approach we will identify genome-wide SRG1 DNA binding sites. This will be combined with Illumina Solexa-based gene expression profiling to determine the impact on transcription of adjacent genes / RNAs resulting from SRG1 occupancy of any given binding site. Collectively, this work will provide significant insights into SNO signalling and turnover during the establishment of plant disease resistance.
 
Description We have discovered that gas, nitric oxide (NO) can function as an important molecule in the control of plant immunity. NO can modify protein function by a process called S-nitrosylation. We have identified a two proteins that are targets for this modification. The activity of both of these proteins in plant immunity can be regulated by S-nitrosylation.
By manipulating the S-nitrosylation status of these proteins we were able to control plant immunity. These findings provide new insights into how the plant defence system might be manipulate to provide increased resistance against pest and pathogens. Our discoveries will help guide future plant breeding efforts to develop improved crop varieties.
Exploitation Route As in Arabidopsis, barley homologs of our redox regulated E3 ligase appear to be central to resistance against powdery mildew, an economically important pathogen. A barely powdery mildew effector has been found that interacts with this E3 ligase, highlighting its importance. Selecting for variants of this protein in barley may help guide plant breeding approaches.

We have also shown S-nitrosylation regulates global SUMOylation, establishing a new paradigm.
Sectors Agriculture, Food and Drink

 
Description We are in discussion with plant biotechnology companies to exploit our findings.
First Year Of Impact 2013
Sector Agriculture, Food and Drink
Impact Types Economic

 
Description NNCSF, IDB Scholarship
Amount £30,000 (GBP)
Organisation National Natural Science Foundation of China 
Sector Public
Country China
Start 01/2013 
End 01/2014
 
Description NNCSF, IDB Scholarship
Amount £30,000 (GBP)
Organisation National Natural Science Foundation of China 
Sector Public
Country China
Start 01/2013 
End 01/2014
 
Title SNO 
Description Transgenic plant lines as tools to support s-nitrosylation research. 
Type Of Material Biological samples 
Year Produced 2011 
Provided To Others? Yes  
Impact Has enabled the initiation of other new lines of research activity. 
 
Description Powdery mildew effector 
Organisation University of Copenhagen
Country Denmark 
Sector Academic/University 
PI Contribution We identified the E3 ligase.
Collaborator Contribution characterising effector that targets the redox regulated E3 ligase we have identified.
Impact EU grant for staff exchange.
Start Year 2013
 
Description school visit 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact Talk sparked great interest in biotechnology

school children visited my lab.
Year(s) Of Engagement Activity 2011,2013