Parameterisation of developmental networks to understand periodic patterning

Lead Research Organisation: University of Edinburgh
Department Name: The Roslin Institute


Advances in genetics have given us a good idea of how many genes we have. From this we get an idea of how many components act to make and maintain our bodies. However, it is clear that genes do not act in isolation, but act with others to form a network. The operation of the network as a whole, rather than that of an individual gene, gives tissues their shape and cells their identity.

Even before genes were isolated and sequenced, ideas were formed concerning the nature of network interactions that might operate to drive the development of form in the embryo. Almost 60 years ago Alan Turing suggested that many examples of repeated strucutres in nature, such as the alternating leaves on a plant or the spacing of hairs in the skin, could be explained by a simple set of interating substances, which he called morphogens. He realised that if two morphogens have opposing properties, but operate over different ranges, then this system can produce ordered patterns out of almost nothing. Since this seminal work theoreticians have applied this insight to a wide range of biological patterns, such as spot and stripe markings on animal skin, the colour patterns on seashells, internal organs such as the trachea and even the distinction between the left and right sides of the body. Theory is beginning to meet experimental work in defining what Turing's postulated 'morphogens' might be for specific systems, but so far studies in this area have been limited to labelling this or that molecule as a morphogen. To move this field forward we need (i) a definition of the important morphogens that act in a specific tissue, (ii) a mathematical model that can describe the operation of these molecules and (iii) a set of measurements for the important characteristics of these molecules, such as the speed with which they move through tissues and the their molecular lifespan. We will perform a bottom-up integrated mathematical and experimental study of feather patterning in embryonic chicken skin to fully test Turing's idea for the first time.

Recent genetic advances have allowed us to define the key molecules required to produce a pattern in the chicken skin, giving us the key components we need to piece together an understanding of this system. Embryonic skin develops well in culture, allowing us to observe and manipulate the patterning process, and provides a large amount of material for experimentation. This is therefore the ideal system in which to test our mature ideas about how higher level networks of genes operate to create ordered patterns in nature.

Technical Summary

Periodic patterns are a fundamental feature of vertebrate anatomical organisation. Such patterns, arising rapidly in the embryo, have long been suspected to involve the action of a system involving coupled short range activatory and long range inhibitory processes. Five decades of theory have clearly shown that a system of such interactions can yield self-organisation and the production of organic-looking patterns, at least on a computer screen. While developmental biology, genetics and molecular biology have begun to explore what the components of such systems might be, this has not yet advanced to the stage at which we can properly test or understand its operation. To move forward a quantitative molecular approach is needed to provide the hard data to test the theory and illuminate its operation in a defined system.

We will build on our recent work in avian genetics and developmental biology to establish a structural network of signalling interactions that patterns the developing chicken skin. We will produce a mathematical model that describes these interactions and which takes into account realities in biological processees, such as defining the production of proteins in terms of transcription and translation. We will then measure the relevant molecular parameters, such as diffusion and decay rates of proteins in the system, to input into the model. The output of this simulation will inform us as to how well it can explain the size and spacing of pattern elements in the skin, as well as the timescale of pattern emergence. The simulations will be used to predict the effects of alterations to molecular parameters and signal intensities, and these predictions will then be tested experimentally to refine and evaluate the model's predictive power. This iterative experimental/modelling approach will then be expanded to incorporate more entities into the network, if necessary, and to explore the malleability and robustness of the system.

Planned Impact

This is primarily a fundamental science project that aims to produce insights into the mechanisms of embryonic development and pattern formation. The immediate impact will chiefly be upon the academic beneficiaries and the general public, with industrial benefits arising from our work on the genetics of feather control, which is extensively documented as a highly beneficial trait for egg and meat production, and animal welfare, in hot conditions (either chronic or acute). Our explorations of the recessive scaleless mutant have resulted in a genetic test for the mutation which will be reported along with our findings in development, signalling and pattern formation. This test can be used for rapid introgression of this trait into any desired line, particularly anticipated to be useful for the broiler chicken industry.

The public impact of this project upon the public will be enhanced by the 'real-world' nature of the model system studied; the distribution of hair of different types across the body. This model is easily appreciated by a lay audience and, combined with the striking images produced in studies of spatial patterning, this area is ideal for public engagement activities. In this regard the use of cultured skin and computer simulation where appropriate in the project, rather than Protected Animals, will aid public engagement and acceptance.

Academic beneficiaries will gain new insights into the basis of vertebrate development and the way in which computational tools can be used in conjunction with wet experiments to attain a deeper understanding of biological phenomena. In addition, the specific signalling pathways under study are relevant to the development of many vertebrate organs and will stimulate studies regarding the integration of these signals in a range of tissues.


10 25 50
Description We have met our objectives and opened some new areas unanticipated at the beginning of the project. We have derived a model for interactions that pattern the developing skin and also found the attractant molecule that guides cells to their proper locations, together with its opposing inhibitor. We have used computational simulations to show that a mixed system of interactions involving cell movement as well as cell signalling, rather than a simple signalling model as used by most investigators and intended at the start of this project, best explains the process of pattern formation in this system. In addition, we have applied the model to understand aspects of interspecies diversity of skin patterning.
Exploitation Route The role of cellular attraction to developing structures, and the knowledge of how this is controlled, can be useful in altering cell behaviour prenatally or postnatally to aid tissue repair and regeneration. A major question that we are addressing is how much of these embryonic cell behaviours are retained in adult skin. The work that we have done also illuminates how the number of feathers is set prior to hatching in a bird, with feather number known to be of major importance in heat tolerance or susceptibility to hyperthermia. These findings underpin rational efforts to reduce feather number to improve tropical poultry production.
Sectors Agriculture, Food and Drink,Pharmaceuticals and Medical Biotechnology

Description Our identification of the genetic and cellular control of feather patterning in the embryo, which defines the total number and distribution of feathers in adult chicken, has been made available to industry and academics. As feather coverage is a major economic and welfare aspect of poultry production, this is enabling breeders to consider modulation of feather coverage in their programmes.
First Year Of Impact 2017
Sector Agriculture, Food and Drink
Impact Types Economic

Description Private company
Amount £28,800 (GBP)
Organisation Edimer Pharmaceuticals 
Sector Private
Country United States
Start 03/2015 
End 03/2017
Description Response mode
Amount £811,087 (GBP)
Funding ID BB/N008545/1 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 04/2016 
End 03/2019
Description Voronoi analysis of feather patterns 
Organisation University of Oxford
Country United Kingdom 
Sector Academic/University 
PI Contribution We generated experimental data and provided ideas to the collaboration
Collaborator Contribution Collaborators developed a quantitative method to assess the regularity of feather patterns, which we use to compare the patterns between experimental treatments and between species
Impact Multi-disciplinary: Cell and developmental biology from Edinburgh, mathematical approach to spatial patterns from the University of Oxford
Start Year 2013