Enhanced productivity and functionality of Modified Ribosomally Produced Peptides (M-RIPPs)

Lead Research Organisation: University of St Andrews
Department Name: Chemistry


Ribosomally Produced Peptides (RIPPs) are widely recognised as one of the most promising classes of compounds with the potential to treat many diseases including infection, cancer & inflammation. They are of great interest to the pharma industry, but are extremely costly to produce/modify - even in milligram amounts. Through the utilisation of cutting-edge techniques in combinatorial synthetic biology, this project sets out to achieve a world first; namely, to produce bespoke libraries of Modified RIPPs (M-RIPPs) in sufficient quantities to permit drug discovery screening. The project combines the fundamental knowledge of the natural processes involved in RIPP biosynthesis of the two premier UK academic groups active in the field with the applied expertise in industrial biosynthesis of a leading UK IB company. It will deliver a versatile yet robust technology platform for the production of M-RIPPs that will be transferred to a spinoff company to be formed around 18 months after project start.

Technical Summary

Ribosomally Produced Peptides (RIPPs) as a biosynthetic class contains many different families such as the cyanobactins, lanthipeptides, proteusins and lasso peptides amongst others. They have a range of biological activities and have a common biosynthesis in which a the core peptide, a small sequences within a larger precursor peptide is modified by tailoring enzymes. The modified core peptide is freed from the leader and additional signal sequences and often undergoes further modification (macrocycle formation, heterocycle oxidation, O/N prenylation) to produce the final modified peptide. The common RIPP biosynthetic pathway indicates that it should be possible to apply multiple types of chemical tailoring from different RIPP families to core peptides, thus generating hybrid molecules with features from multiple RIPPs. This project aims to generate such modified RIPPs (M-RIPPS) and overcome several barriers to their scaleable production. We will incorporate modifications common in cyanobactins (heterocycles, macrocycles, O/N prenylation), lanthipeptides (lanthionine and labionin bridges) and lass peptides. We will use this methodology to generate libraries of unique compounds with novel bioactivities. To assist with M-RIPPS that may not be producible using standard expression systems, we will also use one alternative expression system. We will scale up production to 1-3 L scale and improve downstream processing using a variety of methods, including the incorporation of a cyclic peptide exporter in the producing cells and cultivating them in a biphasic system to allow easy compound extraction and subsequent purification. The final step is technical marketing in consultation with big Pharma with a view to establishing a spinoff company based on this technology.

Planned Impact

As described in proposal submitted to IUK


10 25 50

Related Projects

Project Reference Relationship Related To Start End Award Value
BB/M028461/1 01/08/2015 31/08/2017 £330,521
BB/M028461/2 Transfer BB/M028461/1 01/09/2017 30/11/2018 £143,431
Description We have crystallised several new macrocyclase enzymes and are beinning to understand ring size control. We have also made hybrid macrocycles with un-natural amino acids.We have made hydrid molecules
Exploitation Route Yes they could serve as new start points for drugs.
Sectors Chemicals,Healthcare,Pharmaceuticals and Medical Biotechnology

Description They are being used by our commercial partner Ingenza
First Year Of Impact 2016
Sector Healthcare
Impact Types Economic

Description Primary school visit toHamilton 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Schools
Results and Impact I spent a whole day with primary school children conducting science experiments. The initial focus was for children with special educational needs. The visit was carried at St John Primary School in Hamilton.
Year(s) Of Engagement Activity 2016