5-Dimensional High-Resolution non-invasive assessment of mammalian Embryos (5DHiResE)
Lead Research Organisation:
University of Kent
Department Name: Sch of Physical Sciences
Abstract
The global population will rise from 7 to 9 billion by 2050 with an increasing pressure on natural resources. Diets are also changing towards more meat and dairy products meaning that there is increasing global demand for food, land, energy, water and other resources, e.g. phosphate fertilisers. The livestock sector is challenged to find new ways of accommodating this need while agriculture is competing for resources as urbanisation and industrialisation put more pressure on land use. It is routine practice for pig and cattle breeding companies to transport animals to countries with underdeveloped breeding programs to enhance the quality of their local breeds. Such procedures however have a high cost financially, environmentally and logistically, and raise ethical concerns, despite evidence-based assurances of the companies involved. These factors have resulted in the in vitro production (IVP) of pig and cattle embryos being of increased interest to producers, given that great financial and environmental benefits could be made. Pigs and cattle account for ~60% of meat and ~85% of milk consumption and speed and efficiency at which genetic improvement can be introduced can be much improved through the use of these embryos. It also allows us to facilitate the national and international transport of genetically superior stock in a high animal-welfare, low-cost and bio-secure manner. This is an issue of great global significance, particularly to the industrial partners involved in this application. Significant improvements are however essential to realise the potential of pig and cattle embryos for this use. While cattle (and to some extent pig) IVP continues along a parallel path to human IVF, success rates are relatively low compared to human. Novel and innovative approaches developed with animal embryos in mind from the outset are thus urgently needed and these may, in turn, ultimately inform future developments in human IVF. Most modern human IVF units now own devices that are both incubator and camera for monitoring embryo development and some studies show that their use improves birth rates. While we have made significant strides in this area for pigs and cattle, the imaging is limited, in part because pig and cattle embryos are harder to see because of their high fat content. To improve this, we have recently made use of a new technique called Optical Coherence Tomography (OCT). This provides a 3D image of the embryo and we can extend the analysis into 4 and 5 dimensions to look at how "active" the embryos are (this is called tiny movement analysis - TMA) and how "elastic" the embryos are (using OCT for elastography measurements). In essence, we will ask the question whether embryos that are "better looking"(in 3D) more "lively" (TMA) and more "elastic" are more likely to survive. This is a cross-disciplinary collaboration between Biosciences and Physical Sciences and complements the work we have ongoing to improve pig and cattle IVP generally. The proposal builds on the widespread acceptance of time lapse imaging systems in IVF clinics but augments it from 2 to 5 dimensional analysis. It builds on the world leading expertise of two very different disciplines at Kent. Recent research has shown that 2D monitoring can significantly improve human IVF. We intend to demonstrate whether 5D monitoring can improve the equivalent process in pigs and cattle.
Technical Summary
World population will rise from 7-9 billion by 2050 and diets are changing towards more meat and dairy products, challenging the livestock sector to find new ways of accommodating this need. It is routine for animal breeding companies to ship breeding stock to countries with underdeveloped breeding programs to enhance local breeds, however this involves financial, environmental and logistical costs, and ethical concerns. These resulted in increased interest in in-vitro production (IVP) of cattle and pig embryos to mitigate these concerns, increase selection intensity and promote biosecure stock movement. Significant improvements in IVP are however essential to realise its potential given that success rates are relatively low compared to human IVF. Most IVF units possess devices that are both incubator and time lapse camera and morphokinetic criteria are associated with IVF success, however the nature of the imaging is limited. Optical Coherence Tomography (OCT) is an 'optical biopsy' method for obtaining sub-surface cross-sectional 3D live images of translucent or opaque materials at high resolution. A 4th dimension is added by tiny movement assessment (TMA), giving indications on minute changes over time and a 5th dimension by measurement of elasticity properties using optical coherence elastography (OCE), thereby identifying embryos with the highest implantation potential. This involves altering the shape of the embryo and measuring its subsequent 3D deformation. OCT has a proven track record in evaluating inside tissue volume and is widely used medically as it requires no prior sample preparation, fluorescence nor radiation. To date however, there is no systematic study of the added value of OCT in monitoring IVP/IVF embryos. The purpose of this project will thus be to establish whether OCT, with adapted signal processing protocols can evaluate and monitor early mammalian development, and subsequently improve IVP/IVF success rates.
Planned Impact
The successful development of in vitro produced embryo transfer (IVP-ET) necessitates fundamental research into embryo screening and the development of enhanced, ideally non-invasive and label-free, 3D screening/imaging modalities that aid selection of the 'best' embryos and enhance IVP success rates. Herein is presented a screening tool, 5DHiResE, which focuses OCT technologies on the screening of embryos for IVP. These developments will augment the adoption and use of such screening methodologies and use of embryo-based reproductive technologies in pig and cattle breeding. Our industry partners are global leaders in IVP of livestock embryos and have been instrumental in driving technological innovations within the sector. Their technical expertise and access to animal resources represent an essential contribution to this project that facilitates the required scale of activity and industry-relevant endpoints for successful delivery of the scientific objectives. Uniquely, they provide technical expertise in live-animal egg recovery (cattle) and large-scale ETs (cattle and pigs) necessary to measure the ultimate endpoint of our scientific hypotheses - that the transfer of OCT-screened embryos (ie. using 5DHiResE) improves outcome and leads to live-birth rates comparable to natural conception in sexually mature animals.
Breeding companies: Our industry partners are among the largest global livestock breeding companies operating within the UK with a 28% (pigs) and 35% (cattle) share of the domestic market. They will evaluate the quality of the imaging outputs with a view to downstream implementation of 5DHiResE modality, ultimately enhancing industrial processes by: (i) augmenting the selection of better embryos for IVP-ET; and (ii) facilitating international transport of screened superior stock in a high animal-welfare, low-cost and bio-secure manner. The assurance of enhanced live-birth rates following embryo transfer is central to the success of this project and the companies' business models. IVP-ET will generate a new global market for livestock embryos and place the UK livestock breeding industry at the forefront of technical innovation in this field. In the pig sector we anticipate that the UK market share of our partners will increase from 28 to 40% over 5 years post-project. For cattle the current global semen market exceeds US$1.5 bn annually, with nearly 200 m doses/year sold at an average price of US$10. The potential for IVP-ET to infiltrate this market is significant - if 1% of the semen market was replaced by IVP-ET that would equate to 2 m embryo transfers per annum (5-fold greater than the current 400 K global IVP-ET estimate).
Livestock breeders and producers: We expect that use of screened embryos from OCT will increase the rate of slaughter stock value inflation. This is projected to be >10% increase in the net value of genetic improvement per slaughter pig (from £1.50 to £1.65/pig/annum).This benefit will arise because of the advances in embryo selection. We estimate that for 1.9 million UK dairy cows with a replacement rate of 30%, the Profitable Life Index (PLI) could be increased by £20/heifer/annum or £11.3 million.
Human assisted reproduction (ART): Current systems exist for time-lapse monitoring of embryos [e.g. Embryoscope(R), Vitrolife and Miri(R)] and, despite being widely practised, this has yet to reach its potential. OCT could in future be of great benefit to couples undergoing IVF. Thus, there is considerable interest in developing novel methods for non-invasive embryo screening for use in human ART. New information from the current project will inform on improvements to this.
Breeding companies: Our industry partners are among the largest global livestock breeding companies operating within the UK with a 28% (pigs) and 35% (cattle) share of the domestic market. They will evaluate the quality of the imaging outputs with a view to downstream implementation of 5DHiResE modality, ultimately enhancing industrial processes by: (i) augmenting the selection of better embryos for IVP-ET; and (ii) facilitating international transport of screened superior stock in a high animal-welfare, low-cost and bio-secure manner. The assurance of enhanced live-birth rates following embryo transfer is central to the success of this project and the companies' business models. IVP-ET will generate a new global market for livestock embryos and place the UK livestock breeding industry at the forefront of technical innovation in this field. In the pig sector we anticipate that the UK market share of our partners will increase from 28 to 40% over 5 years post-project. For cattle the current global semen market exceeds US$1.5 bn annually, with nearly 200 m doses/year sold at an average price of US$10. The potential for IVP-ET to infiltrate this market is significant - if 1% of the semen market was replaced by IVP-ET that would equate to 2 m embryo transfers per annum (5-fold greater than the current 400 K global IVP-ET estimate).
Livestock breeders and producers: We expect that use of screened embryos from OCT will increase the rate of slaughter stock value inflation. This is projected to be >10% increase in the net value of genetic improvement per slaughter pig (from £1.50 to £1.65/pig/annum).This benefit will arise because of the advances in embryo selection. We estimate that for 1.9 million UK dairy cows with a replacement rate of 30%, the Profitable Life Index (PLI) could be increased by £20/heifer/annum or £11.3 million.
Human assisted reproduction (ART): Current systems exist for time-lapse monitoring of embryos [e.g. Embryoscope(R), Vitrolife and Miri(R)] and, despite being widely practised, this has yet to reach its potential. OCT could in future be of great benefit to couples undergoing IVF. Thus, there is considerable interest in developing novel methods for non-invasive embryo screening for use in human ART. New information from the current project will inform on improvements to this.
Organisations
Publications
Camard J
(2024)
Complex master-slave enhanced optical coherence microscopy
in Optics Continuum
Economidou S
(2021)
A novel 3D printed hollow microneedle microelectromechanical system for controlled, personalized transdermal drug delivery
in Additive Manufacturing
Erdelyi R
(2020)
Dental Diagnosis and Treatment Assessments: Between X-rays Radiography and Optical Coherence Tomography
in Materials
Erdelyi RA
(2021)
Optimization of X-ray Investigations in Dentistry Using Optical Coherence Tomography.
in Sensors (Basel, Switzerland)
Klufts M
(2023)
828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser
in Biomedical Optics Express
Marques M
(2021)
Akinetic Swept-Source Master-Slave-Enhanced Optical Coherence Tomography
in Photonics
Marques M
(2021)
Sub-surface characterisation of latest-generation identification documents using optical coherence tomography
in Science & Justice
Description | An optical detector for latent fungal infection in produce |
Amount | £184,609 (GBP) |
Funding ID | BB/X003744/1 |
Organisation | Biotechnology and Biological Sciences Research Council (BBSRC) |
Sector | Public |
Country | United Kingdom |
Start | 08/2023 |
End | 11/2024 |
Title | IMAGING APPARATUS AND METHOD |
Description | The present disclosure relates to an apparatus and method that can be used to remotely acquire high resolution depth resolved images from a sample. The apparatus employs an adapter to an imaging device, where the adapter uses a minimum of components to produce interferometry patterns on the input facet of the imaging device. The imaging device can be a bundle endoscope terminated on a camera sensor or on several camera sensors or simply a camera sensor. In conjunction with a swept source or a broadband source, at least one camera sensor may be employed to provide optical coherence tomography (OCT) images of the sample. When the imaging device uses a bundle of optical fibers, the apparatus and method can provide OCT images tolerant to bending of the bundle. |
IP Reference | US2020037871 |
Protection | Patent application published |
Year Protection Granted | 2020 |
Licensed | No |
Impact | We hope that this novel adaptor can transform any bundle or miniature camera into a depth resolved imaging instrument. |
Description | Community Outreach on Light at Ramsgate Market |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | Local |
Primary Audience | Public/other audiences |
Results and Impact | On Saturday 5th October, members of the Applied Optics Group (AOG) teamed up with the SPS Outreach team and Discovery Planet to run a day-long event in Ramsgate. The team ran two marquee stalls in Ramsgate Market: 'Light Loops' and 'Light Botic', full of activities to demonstrate some of the properties and applications of light. The key message of the event was to illustrate via simple experiments many different aspects of light technologies and their value to society. The science was explained through a series of games (some participants playing them twice!), while there was more detailed information available for those who wanted to find out more. The first two experiments in the 'Light Loops' tent demonstrated how light travels through tubes of perspex and water by total internal reflection. While it's universally accepted that 'light travels in straight lines', these demonstrations showed how light can be 'bent' using optical fibres, getting it to where we need it. These fibres now play a key role in our society, from the fibre broadband in our homes to medical devices in our hospitals. Next, a maze of 'security' light rays challenged participants to reach a crystal placed in the middle of the maze. Finally in this tent, an ultraviolet torch was used to find four hidden letters written using fluorescent materials, introducing the idea of using fluorescence in medical imaging and document security (as taught to our forensic science students). Finding the remaining three letters to complete an anagram then took participants over to the 'Light Botic' tent. Here, the participant had to try their skills as a medic, hunting for the remaining letters inside a 'patient' using a flexible endoscope, and giving them an insight into how difficult medical diagnostics can be. This tent also showcased some of our latest work in miniaturised medical imaging devices for the lung. We had lots of interest, from both adults and children, and we even had a surprise visit from the University Vice-Chancellor Prof Karen Cox who happened to be passing by! Market Traders and shoppers also told us they enjoyed the extra buzz and energy in the market. Notes: The event was funded by the EPSRC REBOT (Robotic Endobronchial Optical Tomography project), a collaboration between the AOG and Imperial College London on combining optical coherence tomography with medical robotics for imaging the lung. SPS staff and students taking part were: Adrian Podoleanu, Manuel Marques, Mike Hughes, Vicky Mason, Hannah Tonry, Andy Thrapp, Adrian Uceda, Gianni Nteroli, and Julien Camard. We were also joined by two students currently visiting the Applied Optics Group from Germany (Melanie Wacker) and Mexico (Victor Rico Botero), as well as volunteers from Discovery Planet. |
Year(s) Of Engagement Activity | 2019 |
URL | https://research.kent.ac.uk/applied-optics/2019/10/10/community-outreach-at-ramsgate-market/ |