📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Molecular characterisation of Toll-like receptor 4 biased signalling through the TIR-domain-containing adapter-inducing interferon-beta

Lead Research Organisation: University of Cambridge
Department Name: Veterinary Medicine

Abstract

Development of successful vaccination strategies in humans of all ages is important not only for healthy ageing across the lifecourse, but also to reduce antimicrobial resistance. Vaccination of animals both to prevent animal diseases and to reduce the burden of zoonotic pathogens is critical to improve animal health and welfare as well as increasing food security. Adjuvants are molecules used to to improve the efficiency of vaccines in man and animals. Many adjuvants target a class of receptors that recognise pathogenic micro-organisms called Pattern Recognition Receptors (PRRs). One PRR, Toll-like Receptor 4 (TLR4), is important for recognising Gram negative bacteria and protecting the host against infections with these bacterial species. Over activity of this receptor, however, leads to severe inflammation and it is thought that increased activation of TLR4 as we age underpins many of the conditions commonly seen in an ageing population. TLR4 activates separate, but linked arms of the immune response. One arm, through a protein called Toll-Interleukin 1 Receptor (TIR)-domain-containing adapter-inducing interferon-beta (Trif), is very efficient at facilitating the development of protective vaccine responses. The other, through a protein called Myeloid Differentiation Primary Response 88 (MyD88), protects animals against Gram negative bacterial infections. An adjuvant molecule monophosphoryl lipid A (MPLA) selectively activates Trif in humans, but the mechanisms by which this occurs are not understood. In this grant we will determine how MPLA activates TLR4-Trif by changing the structure of TLR4 and determining whether this alters activation of Trif and/or MyD88. We will also determine the protein complexes formed by Trif after MPLA activation of immune cells. Finally we will try and identify molecules that will selectively target TLR4 and Trif driven immune responses to generate new compounds for vaccine adjuvants and other therapeutic applications.

Technical Summary

Development of successful vaccination strategies in humans of all ages is important not only for healthy ageing across the lifecourse, but also to reduce antimicrobial resistance. Vaccination of animals both to prevent animal diseases and to reduce the burden of zoonotic pathogens is critical to improve animal health and welfare as well as increasing food security. The adjuvant monophosphoryl lipid A (MPLA) is an agonist at the Pattern Recognition Receptor Toll-like receptor 4 (TLR4). In humans MPLA selectively activates TLR4 signaing through the Trif-related adaptor molecule (Tram) / Toll-Interleukin 1 Receptor (TIR)-domain-containing adapter-inducing interferon-beta (Trif) signaling pathway, but the molecular basis by which this occurs is not understood. In our recent work we have determined: 1) the molecular basis for bacterial lipid recognition at TLR4 2) the stoichiometry of TLR4-induced signaling complexes and how this relates to TLR4-dependent signaling induced by lipids in living cells 3) the structural basis for regulation of lipid-dependent TLR signaling. Here we will build upon this work to explore the hypothesis that there are discrete amino acid differences in the extra cellular and TIR domains of TLR4 that will preferentially divert signals through Tram and Trif, rather than Mal and MyD88, that can be exploited to develop molecules with selective activity at this signaling pathway. We will use structure-function analysis to characterise the mechanistic basis for the Trif-biased activation of TLR4 by MPLA and to determine the molecular nature of the MyD88- and Trif-dependent signaling complexes formed. In the final part of the proposal we will identify small molecules and/or cell permeable peptides that selectively target TLR4/Tram/Trif specific signaling which could be used for a range of therapeutic applications in man and animals.

Planned Impact

Our research program aims to determine how the adjuvant molecule monophosphoryl lipid A (MPLA) interacts with the pattern recognition receptor Toll-like receptor 4 (TLR4). Activation of TLR4 by infectious agents, such as bacteria, induces an innate immune response and inflammation through two signalling pathways via the adaptor proteins Trif or MyD88. Effective adjuvant activity is driven through the Trif pathway whereas signaling through MyD88 controls Gram negative bacterial infections. MPLA selectively activates Trif signaling in humans, but the mechanisms by which this occurs are not well understood. Determining the structural mechanisms by which this occurs in man and animals offers the opportunity to use this information to develop new vaccine adjuvants which is important in a world where antimicrobial resistance is increasing and vaccination of man and animals to reduce the pathogen burden is one mechanism to tackle this problem. We also hope to find molecules that selectively inhibit TLR4-Trif as potentially novel anti-inflammatory therapeutic interventions for the many chronic inflammatory conditions that afflict the elderly whilst leaving the protective TLR4-MyD88 signaling against bacterial infection untouched so our work may well have very wide therapeutic impact.

Short term impact: The molecular mechanisms by which MPLA selectively activates TLR4 will be of immediate interest to the academic community, particularly in immunology and infectious diseases. Innate immunity is a field of fast moving and intensive research so our mechanistic work will be of particular interest to scientists working in this area. Innate immunity and infectious diseases are also areas of intense interest to the pharmaceutical industry. The Immunology Catalyst at GSK (of which Clare Bryant is a member) is focused on innate immunity as it is thought that the next generation of immunotherapies will come from this area of research. Our work will therefore be of immediate interest to the pharmaceutical industry

Medium and long term impact: We have many long standing collaborations with the pharmaceutical industry (for example Astra Zeneca, Genentech, Apollo Therapeutics, Zoetis Animal Health and GSK). In the course of the project we will attempt to identify small molecule or peptide modulators of TLR4 activity. We already have a number of candidate molecules which if selective for TLR4-Trif signalling are likely to be of interest to our pharmaceutical colleagues allowing for rapid translation of this work for potential development of future medicines. We are already developing small molecule TLR4 antagonists with Apollo Therapeutics and we expect that identification of further molecules that target this pathway will be of interest to a number of pharmaceutical companies.

Other forms of impact: with the emergence of antimicrobial resistance and the increased burden of chronic inflammatory disease in an ageing population our work is likely to be of interest to the media. We are very experienced in public engagement and all our major advances will be discussed with the Cambridge University Communications office. Our postdoctoral workers will be working in a multidisciplinary team so will have opportunities to learn new techniques, such as cryoelectron and light sheet microscopy, to broaden their skill base. They will also undertake professional development training within the university to develop the skills necessary for the effective conduct and management of this research, research leadership, the integrity and ethical conduct of the research and the management and communication of open data.
 
Description In this proposal we wanted to understand how the vaccine adjuvant monophosphoryl lipid A (MPLA) activates the host receptor Toll-like Receptor 4 (TLR4) which triggers inflammation in response to Gram negative infection. We were particularly interested in understanding how the balance between the key adaptor proteins MyD88 and Trif when integrating signals from TLR4 may be altered if stimulating cells with MPLA or the cardinal TLR4 ligand lipopolysaccharide (LPS). MPLA is thought to preferentially activate TLR4-Trif signalling to induce its adjuvant-like effects. We aimed to use this information to identify small molecules that might skew signaling through Trif to generate new molecules for vaccine adjuvants and therapeutic applications.

Significant new knowledge generated: Both Trif and MyD88 are thought to form multi-protein complexes to trigger inflammation. Using a range of biochemical techniques (structural biology and biophysical analysis) we identified the structure of Trif and showed the protein, like MyD88, is organised into filaments. This analysis predicted Trif would be present as a multi-protein complex in unstimulated cells, but using single protein microscopy we identified endogenous Trif within the cell and showed it was largely monomeric. When cells were stimulated with MPLA or LPS very large multi-protein Trif signalling complexes form at multiple sites within cells to trigger inflammation. Unexpectedly anti-pathogen signaling from Trif was driven from monomers rather than multimeric Trif identifying important new mechanisms in pathogen and inflammatory signalling that need to be understood to develop new therapeutic approaches. MPLA and LPS caused similar changes in the TLR4/MD2 protein complex such that clear differences between how these two lipids bind to the receptor cannot be seen in our analysis.

New or improved research methods or skills developed; To understand how TLR4, Trif and MyD88 signal we developed protocols to fluorescently tag endogenous proteins in cells to understand the composition of TLR signalling complexes.

Important new research resources identified; we have generated many engineered macrophage cell lines (knock out or with endogenous signalling proteins tagged) for use in TLR biology.

Important new research questions opened up; Identifying that monomeric TRIF can signal without having to form a multi-protein complex identifies novel signalling mechanisms that need to be characterised.

Significant negative results; We did not manage to fully understand how the complete TLR4/MD2 complex forms in solution, but using models and functional approaches we did identify that in cells TLR4 only exists as monomers or dimers in response to MPLA or LPS. Signalling through TLR4 required both MyD88 and Trif which work together to enhance signalling. Most of our experiments indicated that TLR4 largely did not activate either MyD88 or Trif alone. Screening of a library of small molecules also confirmed this observation.

Increased research capability generated from training delivered in specialist skills; the biological scientist because fully trained in imaging techniques and the chemist was trained in working with cells.
Exploitation Route 1. Use of our research by academics: characterisation of the Trif structure will allow further analysis of how this protein works and what proteins may associate with it to regulate inflammation. Our identification of new ways in which Trif signals will allow further exploration of these pathways to understand their cellular function in infection. Our development of new protocols and tool cell lines will facilitate the research of other academics in innate immunity.
2. Use of our research by non academics: the organisation of Trif will help drug companies to design molecules to interfere with its function to treat patients with immune related diseases. Characterisation of the new Trif signalling pathways could be taken forward to design drugs to inhibit proteins in these signalling pathways to use as anti-inflammatory or anti-infective drugs.
Sectors Agriculture

Food and Drink

Education

Healthcare

Pharmaceuticals and Medical Biotechnology

 
Description MICA_Multimodal analysis of the pathophysiology of bronchiectasis
Amount £959,636 (GBP)
Funding ID MR/W031574/1 
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 12/2022 
End 11/2024
 
Description THE MOLECULAR BASIS OF THE TLR4 SIGNALLING RESPONSE IN ALZHEIMER'S DISEASE
Amount £397,295 (GBP)
Funding ID PG2020A-009 
Organisation Alzheimer's Research UK 
Sector Charity/Non Profit
Country United Kingdom
Start 03/2022 
End 02/2025
 
Title Reciprocal regulation of TLR4, TLR3 and Macrophage Scavenger Receptor 1 regulates nonopsonic phagocytosis of the fungal pathogen Cryptococcus neoformans. 
Description Raw count data of phagocytosis in wildtype and tlr4-/- cells. 
Type Of Material Database/Collection of data 
Year Produced 2023 
Provided To Others? Yes  
URL https://springernature.figshare.com/articles/dataset/Reciprocal_regulation_of_TLR4_TLR3_and_Macropha...
 
Description Collaboration with Astex 
Organisation Astex Pharmaceuticals
Department Astex Therapeutics Ltd
Country United Kingdom 
Sector Private 
PI Contribution collaborative grant
Collaborator Contribution collaborative grant
Impact N/A
Start Year 2022
 
Description Collaboration with Pascal Meier 
Organisation Institute of Cancer Research UK
Department Section of Medicine ICR
Country United Kingdom 
Sector Academic/University 
PI Contribution Collaborative discussions around cell death pathways and TRIF biology
Collaborator Contribution Collaborative discussions around cell death pathways and TRIF biology
Impact Contributed towards 2 grant applications and submission of a paper
Start Year 2024
 
Description Collaboration with Riccardo Gazzinelli, 
Organisation University of Massachusetts
Department University of Massachusetts Medical School
Country United States 
Sector Academic/University 
PI Contribution Work on IRAK4 and MyD88: advice, discussion, experimental design, manuscript writing
Collaborator Contribution Work on IRAK4 and MyD88: experimental work, manuscript writing
Impact Publication of a manuscript: Cell Rep 2022 Aug 16;40(7):111225. doi: 10.1016/j.celrep.2022.111225. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. Disciplines: immunology, biochemistry
Start Year 2021
 
Description BBC Radio 5 live interview and phone in 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Interview and phone in on vaccines.
Year(s) Of Engagement Activity 2023,2024
 
Description BBC Radio Cambridgeshire Science Slot 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Media (as a channel to the public)
Results and Impact Appeared on show to discuss a number of scientific issues in the news
Year(s) Of Engagement Activity 2024
 
Description Engineered Pandemic Risk Management Program launch - Radio 4 Today program 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Launch of the Pandemic Risk Management centre - interview on Radio 4 Today program
Year(s) Of Engagement Activity 2025
 
Description Interview with BBC World Service for a program on COVID -19 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact An in depth program on new variants of COVID-19
Year(s) Of Engagement Activity 2021
 
Description Interview with Sky News TV 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Interview about changes in COVID-19 management practices
Year(s) Of Engagement Activity 2022
 
Description Interviews (3) with BBC Radio London on current COVID status 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Media (as a channel to the public)
Results and Impact Regular appearance to advise on benefits of vaccination during Omicron peak of COVID pandemic
Year(s) Of Engagement Activity 2021,2022
 
Description Interviews BBC Radio Cambridgeshire (5) 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Media (as a channel to the public)
Results and Impact COVID-19, flu, Vaccines
Year(s) Of Engagement Activity 2022,2023
 
Description Interviews for the BBC News channel (TV) 5 to date 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Interviews on different aspects of dealing with the COVID-19 pandemic
Year(s) Of Engagement Activity 2021,2022
 
Description Interviews with BBC 5 Live (Nicky Campbell phone ins (2); Naga Munchetty (2); Colin Murray (2), Stephen Nolan (2)) 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Interviews on different aspects of COVID-19 including vaccines, vaccine hesitancy, new rules, Omicron and other aspects of the science behind dealing with the virus with a veiw to helping people protect themselves during the pandemic
Year(s) Of Engagement Activity 2021,2022
 
Description Interviews with BBC Radio stations (Radio 5 live Stephen Nolan, Nicky Campbell) 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Interview and radio phone in on COVID-19, flu and vaccines
Year(s) Of Engagement Activity 2022,2023
 
Description Interviews with Radio 4 (Womens Hour, The Today program) 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Discussions on Omicron, vaccines and fighting COVID-19 to help people protect themselves against the virus
Year(s) Of Engagement Activity 2021,2022
 
Description Mind and Matter Podcast 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Discussion about lipids in infectious and inflammatory disease
Year(s) Of Engagement Activity 2024
URL https://mindandmatter.substack.com/p/inflammation-innate-immunity-allergies
 
Description Radio 5 Interview Vaccines 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Media (as a channel to the public)
Results and Impact Discussion on vaccines
Year(s) Of Engagement Activity 2024
 
Description Radio Cambridgeshire interviews: Naked Scientists x2 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Media (as a channel to the public)
Results and Impact Interviews on vaccines and fasting related to the news and a press release on our science respectively. After the interviews I had messages from colleagues and members of the public asking me questions so interest in my research area and an opportunity to change people's views occurred
Year(s) Of Engagement Activity 2023,2024
 
Description Radio interview BBC Radio Cambridgeshire on COVID-19 variants, long COVID and vaccine escape 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact Radio interview Q and A on COVID-19 variants, long COVID and vaccine escape
Year(s) Of Engagement Activity 2021
 
Description Talk at Cambridge Festival (x2) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Public/other audiences
Results and Impact I ran a Cambridge Festival session on "WHY DO BUGS JUMP FROM ANIMALS TO PEOPLE- THE BILLION DOLLAR QUESTION" which was attended by 50-100 people. There was a 30 minute question session where we answered questions from the general public. I talked at a second Cambridge Festival session entitled "MONKEYPOX: LESSONS FROM VIROLOGY AND FROM HISTORY" which was to an audience of 30 people from the general public and, again, there was a good question session lasting about 20 minutes.
Year(s) Of Engagement Activity 2023
URL https://www.eventbrite.co.uk/e/monkeypox-lessons-from-virology-and-from-history-tickets-545991373897
 
Description Talk at Cambridge Science Fair 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Public/other audiences
Results and Impact Talk and panel discussion at the Cambridge Festival
Year(s) Of Engagement Activity 2022
 
Description Talk at Cambridge Science Fair 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact I gave a talk and chaired a question and answer session on the detection of pathogens by the immune system
Year(s) Of Engagement Activity 2022
 
Description Talk at University of Indianapolis 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Talk on evolution of innate immunity and its relevance to zoonotic infections
Year(s) Of Engagement Activity 2022
 
Description Talk for Royal College of Surgeons Ireland 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact A talk on Pattern Recognition Receptors in Infectious and Inflammatory disease
Year(s) Of Engagement Activity 2022