Chemigenetic analysis and efficacy of novel antifungal drugs that target fungal pH signalling
Lead Research Organisation:
University of Exeter
Department Name: Biosciences
Abstract
Collectively, fungal diseases pose a greater threat to animals, plants and ecosystems than other types of infectious micro-organism. Fungal infections of man kill millions and most often occur in patients with severe underlying health conditions such as cancer, or chronic lung disorders such as cystic fibrosis. Fungal infections of plants destroy enough crops annually to feed many millions of people. However, there are a very limited number of antifungal drugs available for use agriculturally or in the clinic and some classes of antifungal drugs, for example the azoles. are therefore used to treat both human and plant fungal infections. In 2018 azole-based fungicides accounted for 34% of the antifungal agents used to treat crops. Worryingly, resistance to all classes of available antifungal drugs is increasing and azole resistance occurring in agricultural settings crosses over into the clinic in around 40% of cases in some settings. This project builds on decades of previous genetic and infection studies, including a PhD project where a new set of chemicals were showed as having antifungal activity. These chemicals attack a fungal signalling mechanism needed for infection and invasion by fungal pathogens in man, plants, animals and we will now work to understand how they work. We will also try to make them more potent, and work with industry to develop them for use in agriculture or in the clinic.
Technical Summary
The repertoire of antifungal agents available to treat fungal diseases is sparse, the rate at which we discover new antifungal modes of action (MOAs) is unacceptably slow, and antifungal resistance is on the rise.
The focus of this project is a highly conserved and fungus-specific signalling pathway used by fungi to adapt to the pH of the extracellular environment. Extracellular pH profoundly influences the production and functionality of fungal secreted proteases, toxins, and substrate degrading enzymes, as well as ion and nutrient transporters. As such, fungal viability is heavily dependent upon versatile adaptations to pH flux. pH adaptation is driven by the fungus-specific PacC/Rim signalling pathway which we discovered, and extensively characterised, in the model ascomycete Aspergillus nidulans. PacC/Rim signalling is highly conserved, and indispensable for full infectivity, in the overwhelming majority of fungal pathogens.
With recent BBSRC iCASE funding we devised a powerful genetic screen with which to seek chemical inhibitors of PacC/Rim signalling. We achieved this by repurposing of a genetic selection technique which was initially devised to seek novel regulators of PacC processing in A. nidulans. The aim of this programme is to identify novel antifungal MOAs which inhibit fungal pH signalling. To this end we have assembled an integrated workflow comprising phenotypic, genetic and chemical profiling intended to maximise efficiency of lead discovery and mitigate attrition due to off target or toxic activities.
The programme is comprised of four research objectives.
1. Screen reference libraries for hit-like chemistries and extant drugs which inhibit PacC/Rim signalling
2. Establish proof of on-target and pan-fungal activity and low toxicity
3. Pursuit and definition of Structure-Activity Relationships (SARs)
4. Identify targets and modes of action, and study antifungal efficacy
The focus of this project is a highly conserved and fungus-specific signalling pathway used by fungi to adapt to the pH of the extracellular environment. Extracellular pH profoundly influences the production and functionality of fungal secreted proteases, toxins, and substrate degrading enzymes, as well as ion and nutrient transporters. As such, fungal viability is heavily dependent upon versatile adaptations to pH flux. pH adaptation is driven by the fungus-specific PacC/Rim signalling pathway which we discovered, and extensively characterised, in the model ascomycete Aspergillus nidulans. PacC/Rim signalling is highly conserved, and indispensable for full infectivity, in the overwhelming majority of fungal pathogens.
With recent BBSRC iCASE funding we devised a powerful genetic screen with which to seek chemical inhibitors of PacC/Rim signalling. We achieved this by repurposing of a genetic selection technique which was initially devised to seek novel regulators of PacC processing in A. nidulans. The aim of this programme is to identify novel antifungal MOAs which inhibit fungal pH signalling. To this end we have assembled an integrated workflow comprising phenotypic, genetic and chemical profiling intended to maximise efficiency of lead discovery and mitigate attrition due to off target or toxic activities.
The programme is comprised of four research objectives.
1. Screen reference libraries for hit-like chemistries and extant drugs which inhibit PacC/Rim signalling
2. Establish proof of on-target and pan-fungal activity and low toxicity
3. Pursuit and definition of Structure-Activity Relationships (SARs)
4. Identify targets and modes of action, and study antifungal efficacy
Publications

Bertuzzi M
(2021)
On the lineage of Aspergillus fumigatus isolates in common laboratory use.
in Medical mycology

Bertuzzi M
(2021)
Single-Cell Analysis of Fungal Uptake in Cultured Airway Epithelial Cells Using Differential Fluorescent Staining and Imaging Flow Cytometry.
in Methods in molecular biology (Clifton, N.J.)

Rahman S
(2022)
Distinct Cohorts of Aspergillus fumigatus Transcription Factors Are Required for Epithelial Damage Occurring via Contact- or Soluble Effector-Mediated Mechanisms.
in Frontiers in cellular and infection microbiology

Velazhahan V
(2023)
Developing novel antifungals: lessons from G protein-coupled receptors.
in Trends in pharmacological sciences
Description | MRC Laboratory Molecular Biology |
Organisation | Medical Research Council (MRC) |
Department | MRC Laboratory of Molecular Biology (LMB) |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Constructs for expression of recombinant integral membrane protein in HEK cells (for reconstitution of multimolecular machine). |
Collaborator Contribution | Specialist expertise in heterologous protein expression (integral membrane proteins); vectors, cell lines. |
Impact | Multidisciplinary: Medical Mycology-Protein structure |
Start Year | 2022 |
Description | MRC Laboratory Molecular Biology |
Organisation | Medical Research Council (MRC) |
Department | MRC Laboratory of Molecular Biology (LMB) |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Constructs for expression of recombinant integral membrane protein in HEK cells (for reconstitution of multimolecular machine). |
Collaborator Contribution | Specialist expertise in heterologous protein expression (integral membrane proteins); vectors, cell lines. |
Impact | Multidisciplinary: Medical Mycology-Protein structure |
Start Year | 2022 |
Description | MRC Laboratory Molecular Biology |
Organisation | Medical Research Council (MRC) |
Department | MRC Laboratory of Molecular Biology (LMB) |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Constructs for expression of recombinant integral membrane protein in HEK cells (for reconstitution of multimolecular machine). |
Collaborator Contribution | Specialist expertise in heterologous protein expression (integral membrane proteins); vectors, cell lines. |
Impact | Multidisciplinary: Medical Mycology-Protein structure |
Start Year | 2022 |
Description | January 2022 MRC Seminar Series: Tackling fungi that cause human lung disease (Elaine Bignell) |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | Tackling fungi that cause human lung disease - A talk delivered to the Directorate, Board & Programme Managers and Institute staff of the Medical Research Council |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.youtube.com/watch?v=_WKtneF1wrk&list=PLSus4fp7v7sQuXdUwREyHbUMR8cqNZKYj&index=15 |
Description | Mycotalks: S1 E12 Antivirulence strategies for tackling Aspergilloses |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | A talk delivered to Medical Mycologists of all career stages that describes molecular genetic approaches to novel antifungal drug discovery |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.youtube.com/watch?v=iGB64q16cgc |
Description | Studies of Aspergillosis at the MRC Centre for Medical Mycology: World Aspergillosis Day 2022 (Elaine Bignell) |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Patients, carers and/or patient groups |
Results and Impact | An overview (for patients suffering from Aspergilloses) of ongoing research aimed at tackling the problem |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.aspergillosisday.org/WAD2022/national-aspergillosis-centre-seminar-series/ |