Understanding animal health threats from emerging H5 high pathogenicity avian influenza viruses

Lead Research Organisation: The Pirbright Institute
Department Name: Avian Influenza

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Technical Summary

The UK poultry industry is experiencing severe socio-economic damage and threats from high pathogenicity avian influenza viruses (HPAIVs) H5Nx of clade 2.3.4.4. These viruses pose zoonotic infections risks. The rapid evolution of these viruses is modulating their biological behaviour (epidemiology, host-range, transmission, and pathogenesis) in different avian species. To determine potential risks and improve controls against these emerging and re-emerging viruses requires a comprehensive knowledge base about the nature of prevailing viruses, and an integrated cross-disciplinary approach to studying virus ecology and epidemiology based on understanding virus/host interactions, and the genetic determinants of virulence, transmissibility and antigenicity in wild birds/poultry.

This project will investigate how contemporary H5Nx HPAIVs acquire adaptive changes to increase fitness within domestic and wild avian populations. We will define viral and host factors that potentially contribute to increased transmissibility, persistence, and pathogenicity in wild birds and those that enhance their potential to disseminate and manifest disease in poultry. Evolutionary changes drive virological, immunological and zoonotic infection potential of these viruses therefore, our understanding of environmental and molecular correlates required or associated with successful evolution, immune escape, dissemination and maintenance of HPAIVs via migratory populations of wild birds will be developed. Furthermore, we will define molecular markers for successful interspecies transmission and fitness in poultry with severe clinical outcomes. The will provide insights for assessing threats from new and emerging strains, enabling national and international agencies to design and execute contingencies as part of risk mitigation and disease control. This will provide vital information when considering how to invest scarce resources for surveillance design aimed at early warning of the threat.
 
Description 1: Analysed the role of antigenic factors in the emergence of novel H5N1 high pathogenicity avian influenza viruses (HPAIVs). The results demonstrated that the novel H5N1 HPAIVs infecting wild birds and poultry in the UK and UK are antigenically distinct and carry relatively high antigenic homology with the HPAIVs H5NX viruses of clade 2.3.4.4B but not with other HPAIVs H5NX viruses belonging to clade 2.3.4.4A, or C-H). For example, the H5N6 HPAIVs viruses that are infecting poultry in China and Vietnam are antigenically different from the H5N1 infecting poultry in the UK. Thus, the vaccines being used in China against H5N6 (clade 2.3.4.4H) will not protect poultry from the HPAIVs H5N1 viruses infecting poultry in the UK and Europe.

2: Defined viral factors that contribute to pathogenicity, disease emergence and markers of zoonotic potential. Current (2012-2023) viruses infecting wild birds and poultry in the UK and Europe have no binding affinity for human-like cell receptors posing little to no risk of zoonotic transmission from infected birds to humans.

3: To overcome problems of insufficient sera, serological tools were generated to dissect antibody responses to each of the two different viral surface proteins (both individually and in tandem), allowing a better understanding of how different key surface proteins drive immune responses and what that means where viruses emerge containing different coat proteins.

4: Viruses that emerged during the outbreak were analysed in an experimental environment to try and drive antigenic evolution through incubation with relevant sera containing neutralising antibodies and selection of variants that escaped neutralisation. A number of viral variants, that had emerged in the face of incubation with differing concentrations of antibodies, were generated that demonstrate key areas of antigenic flexibility.

5: Assays and methods of assessment were developed to investigate the interaction of H5N8 and H5N1 (UK and Europe during 2020-2021) and stability of interactions between different glycoprotein combinations.

6: Experimental evaluation of pathogenesis and transmission for the AIV-07-B2 genotype showed that ducks shed large amounts of infectious material whilst chickens, in contrast, shed comparatively little infectious material. Later experimentation with AIV-09 and AIV-48 has demonstrated differences in infection dynamics and transmission profiles. Replication dynamics of low pathogenic avian influenza viruses and a high pathogenic avian influenza virus were also compared across duck and chicken cell lines to develop a rapid assay for screening emerging avian influenza viruses for replication fitness and pathogenic potential.

7: Panels of reverse genetics H5 viruses were generated to facilitate the study of individual molecular determinants of virulence across FluMap. The detection of H5Nx viruses containing different combinations of NA gene led to an investigation of the relationships between two external glycoproteins HA and NA. Using bioinformatic approaches and functional characterisation, we identified the T156A polymorphism in the HA as potentially a key marker for H5N8 to H5N1 shift. This 156A mutation has emerged in H5N1 viruses over the epizootic period, correlating with the expansion of H5N1 and shows higher fitness with N1 NA, and low fitness with N8 NA.
Through analysis of the replication of these viruses in ex vivo trachea organ cultures revealed a rapid loss of tracheal ciliary activity and pathology. The severity was mapped to internal gene segments of H5N1, providing insight into the gene segments required for pathology. We also investigated how efficient each different viral polymerase was at replicating the viral genetic material. The polymerase activity of H5N8 (2020) is weaker compared to H5N1 (current epizootic). This weaker polymerase activity of H5N8-20 relative to H5N1 maps to the PB2 and PA segments, suggesting the fitness of H5N1s is (at least partially) due to acquisition of novel polymerase genes. We also found H5N1 viruses have enhanced ability to switch off host innate responses by NS1 but not by PA-X compared with H5N8.

8: The receptor binding preference for H5N1 HPAIVs was to 'avian-like' receptors, albeit with variable binding kinetics, limited binding to 'human-like' receptors. Furthermore, these viruses have a fusion of pH consistent with avian, rather than mammalian influenza viruses, indicating the H5N1 viruses have reduced potential for human-human transmission. We further investigated the effect of mutations which have been detected in these viruses following infection in mink and domestic cats, showing these mutation can boost polymerase activity in human cells. Demonstrating that the internal gene changes can have differential effects in avian versus human systems.
Exploitation Route 1. Initial data from this project will pave the way for the establishment of a more comprehensive research programme developing disease control tools that allow reducing the impact of these viruses on poultry and humans.

2. Understanding the impact, long-term effect and circulation of HPAIV identify future impacts on bird populations may occur and drivers influencing potential survival. The tools developed as part of FluMAP are being deployed in FluTrailMap to define the circulation and role of antibodies in different wild bird populations.

3. Understanding where molecular evolution through antigenic pressures is critical to understanding how viruses may emerge following virus incursion into populations of vaccinated birds. The work undertaken in FluMAP has signalled that these viruses are able to undergo genetic changes that may enable them to escape vaccination and this work sets a background of viral variants that will be analysed further in FluTrailMap.

4. The development of assays and methods of assessment developed to investigate the interaction of H5N8 and H5N1 enabled future assessment of surface protein combinations which may enable greater viral stability.

5. Identifying viral factors that dictate the emergence and long-term stability of different subtypes is critical to understanding the threat from these viruses. Pathogenesis studies have reflected field observations and have enabled a stronger understanding of different shedding profiles and hence the infectivity of different genotypes. A rapid standardised assay evaluating virus replication across avian species can be used to rank emerging viruses.

6. In vitro assessments of the H5N1 glycoprotein and internal gene interactions allowed a better understanding of the factors affecting pathogenesis, virulence and disease outcomes for the current H5N1 and future potential threats from AIV.

7. These analyses provide greater granularity around the risk of the current H5N1 HPAIVs to human health.
Sectors Agriculture

Food and Drink

Education

Healthcare

Manufacturing

including Industrial Biotechology

Pharmaceuticals and Medical Biotechnology

 
Description The fining of this project has been used for: 1: Establishment of risk assessments e.g. potential threats from these viruses to wild birds, poultry, and mammalian species including humans. 2. Development and evaluation of vaccines for poultry.
First Year Of Impact 2022
Sector Agriculture, Food and Drink,Creative Economy,Education,Healthcare,Manufacturing, including Industrial Biotechology,Pharmaceuticals and Medical Biotechnology
Impact Types Cultural

Societal

Economic

Policy & public services

 
Description Evaluate the potential of AstraZeneca's sialic acid tag technology for treating influenza viruses with Fc molecules 
Organisation Liverpool School of Tropical Medicine
Department Parasite Immunology Liverpool
Country United Kingdom 
Sector Public 
PI Contribution Established partnership to investigate the antiviral properties of novel antiviral ( fragment-crystallisable (Fc) molecules) compounds that potentially block influenza virus infection. These compounds will be used to test their antiviral activity against avian influenza and Newcastle Disease virus that are causing sever economic looses to the poultry industry.
Collaborator Contribution The Partners have developed these antiviral compounds and showed that these compounds bids to specific cell surface receptors that are required by the virus to bind to and enter into the cell to cause infection.
Impact Project is just started
Start Year 2022
 
Description PARTNERSHIP: Nanoparticle Vaccines Against Emerging Poultry Infections 
Organisation University of Wisconsin-Madison
Department Department of Pathobiological Sciences
Country United States 
Sector Academic/University 
PI Contribution We established a joint project with School of Veterinary Medicine, University of Wisconsin, Madison, USA. My team will contribute in the development of Novel Target antigen delivery vaccines that selectively delivers antigens to the chicken immune cells and induces faster and stronger immune responses in vaccinated chickens.
Collaborator Contribution The partner developed a novel DNA nano-vaccine platform. This partnership will merge both technologies to enhance both the potency and delivery systems for poultry vaccines.
Impact The partnership submitted a joint research grant proposal to USDA-NIFA-AFRI (Program A1181 Agricultural Biosecurity) entitled "Partnership: Nanoparticle Vaccines Against Emerging Poultry Infections". This grant proposal has been approved by the funders.
Start Year 2022
 
Description Placement Studentship: Production and characterisation of nanobodies recognising avian influenza and Newcastle disease virus surface glycoproteins using phage display technology 
Organisation University of Bath
Country United Kingdom 
Sector Academic/University 
PI Contribution Studentship allocated to Roddy Brookes producing and characterising llama nanobodies which recognise avian influenza and Newcastle disease virus surface glycoproteins, using our established methods of phage display technology.
Collaborator Contribution Supervisory contributions, expertise and research guidance for undergraduate placement, attributed to the Bachelor of Science award.
Impact On-going.
Start Year 2023
 
Description TrailMap-One Health 
Organisation Imperial College London
Country United Kingdom 
Sector Academic/University 
PI Contribution The highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b is panzootic in birds. Its widespread geographical distribution, sheer numbers of infections and frequent incursions in mammals indicate it to be a virus with pandemic potential. We are working as a consortium to achieve a coordinated in-depth risk assessment of clade 2.3.4.4b viruses particularly zoonotic potential of the current clade 2.3.4.4b H5N1 viruses.
Collaborator Contribution The collaborating partners are jointly providing data and samples necessary for evaluating the threat posed by H5N1 Clade 2.3.4.4b highly pathogenic avian influenza viruses (HPAIV) to human health. This effort aims to understand the risks, potential spillover routes into humans, the virus's capacity to adapt for human transmission, and the probable severity of human infections should they occur. We will meet these objectives through three interconnected work packages: (1) assessing the infection likelihood in non-human mammals that could serve as bridging species, (2) evaluating the risk of direct or adapted virus spillover infections in humans, and (3) examining the potential for Clade 2.3.4.4b H5N1 viruses to become transmissible among humans.
Impact The work is currently in its initial stages, with anticipated outcomes expected by the end of this current year, 2024/2025.
Start Year 2024
 
Description Understanding animal health threats from emerging H5 high pathogenicity avian influenza viruses 
Organisation Animal and Plant Health Agency
Country United Kingdom 
Sector Public 
PI Contribution This is a collaborative research project funded by the UKRI-BBSRC to understand how the high pathogenicity Avian Influenza virus (H5N1) persisting in different species of wild birds and transmits from wild birds to farmed poultry, the gaps in biosecurity that allow the virus to penetrate premises, and how this could be addressed. My team contributing by by generating research reagents (such as viruses generated using reverse genetic technique) that allows the identification of molecular markers in the virus genes responsible for virus virulence, transmission and/or antigenic change. The data generated helped the partners to utilise the viruses and reagents for testing their biological behaviors ( such as infectivity and transmission parameters) via animal infection studies. The outcome of this collaborative work will provide insights for assessing threats from new and emerging strains, enabling national and international agencies to design and execute contingencies as part of risk mitigation and disease control. This will provide vital information when considering how to invest scarce resources for surveillance design aimed at early warning of the threat.
Collaborator Contribution The collaboration enhance both the capacity of my team by providing field data ( such as sequences of viruses isolated from the field) and reagents such as post-infection antiserum containing antibodies specific to the field virus. This allowed the investigation of field virus antigenic profiles that can be used for selection of candidate vaccine seeds for the production of effective vaccines.
Impact The data generated provided a risk assessment of contemporary H5Nx HPAIVs that are acquiring adaptive changes to increase fitness within domestic and wild avian populations. This partnership identified viral and host factors that potentially contribute to increased transmissibility, persistence, and pathogenicity in wild birds and those that enhance their potential to disseminate and manifest disease in poultry. We identified genetic changes that drive the virological, immunological, and zoonotic infection potential of these H5N1 viruses. The data generated allowed us an establishment of current and future risks from these viruses to both animals and humans if they continue to remain prevalent in wild bird populations.
Start Year 2022
 
Description Avian Influenza Research at Pirbright 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact Presented a talk as an invited speaker to the Animal Diseases Surveillance and Control Team at The Department for Environment, Food, and Rural Affairs (DEFRA), London, UK sharing the research goals and achievements performed at the Pirbright Institute. The topics focused on (i) understanding the genetic and antigenic evolution of avian influenza viruses, (ii) drivers of zoonotic potential, (iii) improvement of poultry vaccine potency, (iv) investigating molecular markers of antigenic variants, (v) improving avian influenza detection and diagnostic approaches, e.g. lateral flow devices and (vi) development of novel vaccine candidates to improve protective efficacy including vector- and multivalent-based vaccines and targeted delivery of antigens.
Year(s) Of Engagement Activity 2023
 
Description Avian Influenza Vaccines Research at Pirbright 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Delivered a presentation to key research grant funders and stakeholders in the UK, including BBSRC and DEFRA, associated with animal welfare, disease control, and the research goals and achievements performed at the Pirbright Institute. The topics focused on (i) understanding the genetic and antigenic evolution of avian influenza viruses, (ii) drivers of zoonotic potential, (iii) improvement of poultry vaccine potency, (iv) investigating molecular markers of antigenic variants, (v) improving avian influenza detection and diagnostic approaches, e.g. lateral flow devices and (vi) development of novel vaccine candidates to improve protective efficacy including vector- and multivalent-based vaccines and targeted delivery of antigens.
Year(s) Of Engagement Activity 2023
 
Description Avian Influenza: Global Situation & Control Strategies 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presented a talk as an invited speaker at the International Symposium on Poultry Health Challenges in Pakistan. Organized by the World Veterinary Poultry Association (WVPA-Pakistan Branch) at Serena Hotel Faisalabad, Pakistan.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description Avian flu: our food chain is in crisis. 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact The New paper "Telegraph" correspondent Sarah Newey (GLOBAL HEALTH SECURITY CORRESPONDENT) Interviewed Professor munir Iqbal regarding the impacts and threats of current wave if high pathogenicity avian influenza virus causing disease widespread losses to poultry production, mortality of wild birds and mammalian species (otters, foxes, minks sealions), The discussion focus on the impacts of avian influenza infections on the livelihood of farming comunities and threat of zoonotic infection to wider public.
Year(s) Of Engagement Activity 2023
URL https://www.telegraph.co.uk/global-health/science-and-disease/what-bird-flu-pandemic-killedmillions-...
 
Description Bird flu: What is it and what's behind the outbreak? ( BBC New) 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Discussion with BBC News Editors (Helen Briggs & Jeremy Howell). As the The world is going through its worst-ever outbreak of bird flu which led the deaths of hundreds of thousands of wild birds and millions of domestic ones. It is also being found in mammals, so what are the threats from this virus to economy, food security, animal welfare and public health.
Year(s) Of Engagement Activity 2023
URL https://www.bbc.co.uk/news/science-environment-63464065
 
Description Controlling and monitoring Avian Influenza in poultry 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Engagement with veterinarian and farmers involved in poultry production. The discussion focused was new strategies (vaccines and diagnostics) for reducing the the impacts of high pathogenicity of avian influenza viruses.
Year(s) Of Engagement Activity 2023
 
Description Could Bird Flu become a pandemic? (Aljazeera TV) 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact The discussion ( Inside Story) has been impacts of high pathogenicity avian influenza on poultry and whether bird flu become a pandemic?. The inside story was presented by Al Jazeera English corresponded "Mohammed Jamjoom" the discussion focus remains as the world is experiencing its largest recorded outbreak of bird flu, populations of poultry and wild birds are becoming infected. So what are threats of these viruses on food supplies, economy and public health.
Year(s) Of Engagement Activity 2023
URL https://www.youtube.com/watch?v=spp2Cg-jqoc
 
Description Developing novel multivalent vaccines for poultry viral diseases 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Postgraduate students
Results and Impact Presented a talk at the Oxford University training Course on Human & Veterinary Vaccinology, UK.

This talk was directed to students at the University of Oxford to teach and describe the research and challenges to overcome to enhance the efficacy of poultry-based vaccines performed at the Pirbright Institute.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description Developing novel multivalent vaccines for poultry viral diseases 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact A talk entitled "Developing novel multivalent vaccines for poultry viral diseases" was presented to post-graduate students from Univerity of Oxford.
Year(s) Of Engagement Activity 2022
 
Description Emerging Threats: The Evolution and Persistence of Avian Influenza Viruses in Poultry 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presented a talk as an Invited speaker at the 2023 International Symposium on Important Animal Diseases and Zoonoses of Yangzhou University, China.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description Engagement with poultry stakeholders (farmers and veterinarians at "Morocco Poultry Day"). 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Professional Practitioners
Results and Impact Talk was presented to poultry stakeholders including farmers describing the new emerging technologies that increase the efficacy of poultry vaccines, in particular vaccines against Avian influenzas and Newcastel disease virus,.The meetings was attended over 80 participates.
Year(s) Of Engagement Activity 2024
 
Description Global epidemic trend of avian influenza virus and its harm to public health 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Talk as an invited speaker at The 2023 China-ASEAN Seminar on Prevention and Control of Cross-border Animal Diseases, Guangxi Veterinary Research Institute, Nanning, Guangxi, China.

The persistence of avian influenza viruses in bird populations increases zoonotic and pandemic risks. Research focuses on reducing prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis). To address this, topics discussed included research focuses in: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health.
Year(s) Of Engagement Activity 2023
 
Description Improving Breadth and Duration of Immunity of Poultry Vaccines: Targeted Delivery of Antigens to Chicken Antigen Presenting Cells. 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact Talk entitled "Improving Breadth and Duration of Immunity of Poultry Vaccines: Targeted Delivery of Antigens to Chicken Antigen Presenting Cells" presented by Professor Iqbal at 2022 Yangzhou International Conference on Agriculture and Agri-Product Safety - Germplasm Innovation and Agri-Product Safety on 30th November 2022.
Year(s) Of Engagement Activity 2022
 
Description Improving Potency of Poultry Vaccines 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact A talk entitled "Improving Potency of Poultry Vaccines" presented by Munir Iqbal to post graduate students at meeting "The 2022 International Animal Husbandry High-Quality Development Conference" on On 19th November 2022 hosted by Shandong Vocational Animal Science and Veterinary College. More than 300 post graduate and university staff from Shandong Vocational Animal Science and Veterinary College attended the meeting and discussed the advanced in the strategies to reduce the impacts of avian influenza viruses.
Year(s) Of Engagement Activity 2022
 
Description Improving Potency of Poultry Vaccines 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Research outcomes were presented by Munir iqbal at the 2022 International Animal Husbandry: High quality development of animal health and animal husbandry- Virtual Scientific Conference, on 19-Nov-2022, hosted by Shandong Vocational Animal Science and Veterinary College.
Year(s) Of Engagement Activity 2022
 
Description Improving Vaccines against Avian Influenza and Newcastle Disease Viruses 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presented a talk as an invited speaker at the Sino-European Modern Livestock and Poultry Industry Technical Innovation seminar and the launch of the Joint Laboratory of China and European Countries. Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, China.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description Improving the efficacy of poultry vaccines 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presented a talk as an invited speaker at the International Conference: Current Trends, Prospects & Opportunities in Vaccine Research at the Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

Our research on our newly developed targeted-delivery vaccine platform addresses these challenges by improving: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, and (6) overcome maternally derived antibodies.

This platform therefore (1) enhances the efficacy, duration, and breadth of immunity, (2) reduces production losses, (3) improves cost-effectiveness, (4) improves productivity and economy, (5) improves animal welfare, and (6) reduces prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis). Additionally, collaborations with industrial partners can integrate this research to adapt to new antigenic variants and/or hosts.

This ensures early vaccination is possible and this vaccine platform can aid control of avian influenza in early poultry populations.
Year(s) Of Engagement Activity 2024
 
Description Multiple talks at XXIInd World Veterinary Poultry Association Congress - WVPAC 2023, Verona, Italy 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact three independent talks titled: (1) Selectively targeting antigens to chicken immune cells induces faster and very strong immunity in chicks with high levels of maternally derived antibodies, (2) The impact of avian influenza vaccination on zoonotic infections: lessons learned from the H7N9 avian influenza control, (3) Investigating molecular markers influences the haemagglutination activity of the H9N2 avian influenza viruses.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effective: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description New rapid protection bird flu vaccine 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Article published in the magazine "Poultry World) by Freelance journalist Natalie Berkhout describing the development of a new methods have been developed to enhance the immune response that vaccines produce and reduce the amount of virus that birds shed into the environment. One technique involves tagging flu virus proteins with a marker that makes them easier for antigen-presenting cells (APCs) to capture. These immune cells can efficiently process the tagged proteins, resulting in a robust and long-lasting antiviral response in chickens.
Year(s) Of Engagement Activity 2022
URL https://www.poultryworld.net/health-nutrition/health/new-rapid-protection-bird-flu-vaccine/
 
Description One Health: Zoonosis and Their Control Through the Use of Vaccines 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Presented a talk as an invited speaker at the conference entitled "National Dialogue on Agricultural Research" at the National Agricultural Research Centre (NARC), Islamabad, Pakistan.

The persistence of avian influenza viruses in bird populations increases zoonotic and pandemic risks. Research focuses on reducing prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis). To address this, topics discussed included research focuses in: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health.
Year(s) Of Engagement Activity 2023
 
Description Prevalence and Control of Avian Influenza Viruses in Poultry 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Presented a seminar (as an invited speaker) to poultry stakeholders including farmers and veterinarians at "Morocco Poultry Day" organised by Boehringer-Ingelheim in Tangier, Morocco.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2024
 
Description Preventing and controlling avian influenza infections in poultry and humans 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description Targeted Antigen Delivery Vaccines: Next Generation Vaccines for Poultry 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact A talk entitled "Targeted Antigen Delivery Vaccines: Next Generation Vaccines for Poultry" presented to the Executive Chair of the Biotechnology and Biological Sciences Research Council. The discussion aim was the advances approaches that can increases the strength and breath of vaccine immunity in animals and humans.
Year(s) Of Engagement Activity 2022
 
Description Time for rethink on farming poultry as experts warn bird flu has slipped 'through our fingers (Sky News) 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact Discussion with Sky New UK corresponded Tom Clarke (Science and technology editor @aTomClarke) on continued avian influenza viruses are becoming endemic in bird populations in Europe and North America with some areas seeing a 600% increase in infection over the past few months in September -November 2022. In the UK, every day now, two or three new premises have been testing positive for bird flu. If they do, their flocks are culled and over 50 million birds culled in Europe this year and a similar number in North America. There is a need for an improved disease control strategies against these viruses. just culling of infected and at risk will not reduce viruses prevalence and spread, because virus in circulating in wild birds.
Year(s) Of Engagement Activity 2022
URL https://news.sky.com/story/time-for-rethink-on-farming-poultry-as-experts-warn-bird-flu-has-slipped-...
 
Description Understanding Evolution and Impacts of Avian Influenza Viruses 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Professional Practitioners
Results and Impact Internal seminar presented at The Pirbright Institute, sharing the achievements and current ongoing research being performed within the Avian Influenza Virus and Newcastle Disease Virus Group to other colleagues throughout the site.

Poultry production continues to face several challenges caused by avian influenza, including: (1) virus evolution & antigenic diversity, (2) emergence of new virus variants, (3) co-circulation of multiple variants of same pathogen, (4) mixed infection of different viruses (immunosuppression), (5) maternally derived antibody interference, and (6) poor quality vaccines and sub-optimal vaccination practices.

From these challenges, the topic of discussion and research drives optimal vaccination strategies to improve: (1) potency: a single dose to induce faster, stronger and durable immunity against multiple pathogens, (2) effectiveness: protect from clinical disease, reduced shedding and transmission, (3) affordability: cheap to produce and easy to deliver, (4) safety: no adverse impact to host or environment, (5) stability: retain efficacy for at least 1 year at indicated temperature, (6) DIVA: to allow differentiation between infected and vaccinated animals.

Implementing new emerging vaccine approaches can: (1) enhance the efficacy, duration, and breadth of immunity, (2) reduce production losses, (3) improve cost-effectiveness, (4) improve productivity and economy, (5) improve animal welfare, and (6) reduce prevalence of viruses and protect public health (reduced virus prevalence = reduced zoonosis).
Year(s) Of Engagement Activity 2023
 
Description Why wet markets will never close - despite the global threat to human health (The Telegraph) 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact This discussion was due to current enormous global spread of bird flu and widespread poultry outbreak has generated unprecedented opportunities for the virus to jump to humans and potentially even mutate to better spread between people. Since the Live bird markets have been identified as key factors in the spread, persistence and evolution of avian influenza viruses,. Therefore, there is an increased risk to public at the live birds markets and how these risks can be reduced to increase food safety, security and public health.
Year(s) Of Engagement Activity 2023
URL https://www.telegraph.co.uk/global-health/science-and-disease/why-wet-markets-will-never-close-despi...