BBSRC Institute Strategic Programme: Delivering Sustainable Wheat (DSW) Partner Grant

Lead Research Organisation: University of Leeds
Department Name: Sch of Biology

Abstract

Delivering Sustainable Wheat (DSW) programme is needed because wheat is an indispensable global staple and the major crop of the UK and Western Europe. Wheat will play a crucial part in feeding a world population of 10B by 2050 but its production is fragile as more than half the world supply is from just five countries. This fragility has been tragically demonstrated by the war in Ukraine, an important wheat exporter. Future increases in wheat production have to be achieved without equivalent growth in fertiliser (nitrogen fertilisers are a major source of greenhouse gasses) and water use (all wheat growing regions suffer ground water decline). While facing these challenges farmers are also confronted with yield limiting effects of climate change and new diseases. Adaptations are needed to achieve sustainable production in the coming decades. Wheat also plays an important role in delivering human nutrition. With further enhancements reductions in human misery and healthcare costs are possible by filling dietary gaps with more nutritious wheat. DSW will form a uniquely coordinated UK contribution n to these challenges with strong linkages to the international wheat community. It is in a strong position to do this because the current wheat programme (DFW) has developed world leading experimental platform for wheat research. Extensive specialist gene discovery populations allow us to sample the majority of natural diversity available and to show which elements of this diversity are useful for breeders in tackling the challenges described. DFW uncovered the genetic code for 1000s of these lines. This means that after locating useful genes DSW can understand their role in molecular networks controlling targeted characteristics. With gene editing the function of these DNA changes will be proved. These tools and resources, accessible because of open and fair data access, are powerful but need to be directed towards the right questions. DSW is focussed on crop characteristics chosen in long term discussion with the widest possible group of wheat experts. It will advance understanding of yield determination to increase
productivity without equal rates of increase in fertiliser use, so minimising CO2 emissions. Alternative strategies of wheat development which increases yield with minimal sensitivity to temperature will be uncovered. DSW will even investigate how wheat can be a CO2 sink and achieve Net Zero status, for example by deep rooting and assess these new characteristics in farming systems that reflect changes in agriculture, such as the move from ploughing to reduced cultivation practices. This research depends on a deep understanding of the dynamic process of photosynthesis. DSW will
identify new disease resistances for existing disease threats and play its part in predicting new threats. Long term solutions for sustainable disease resistance will be found and incorporated into sustainable integrated pest management programmes. The goal to increase nutritional benefits of wheat will focus on Iron, Zinc, Calcium and fibre. For the first time, the wheat programme will conduct human intervention trials to provide direct evidence for the physiological benefits of nutritionally improved wheat. At the heart of the programme, open and fair data access will ensure that DSW delivers. Again, DSW has set up the platform that this excellent research can be translated into progress for plant breeders. DSW invests in pre-breeding so that the new genes, knowledge and new types of wheat feed into breeding. This highly integrated cross disciplinary programme could not be achieved by any one institution. DSW brings together the complementary skills of four research Institutes (John Innes Centre, Rothamsted, Quadram Institute, and Earlham) and five universities (Leeds, Nottingham, Lancaster, Bristol, and Imperial College) and the National Institute of Agricultural Botany.

Technical Summary

This project represents the University of Leeds contribution to the delivery of the following Institute Strategic Programme Grant: Delivering Sustainable Wheat (DSW), BB/X011003/1.
Dr Dixon's team at the University of Leeds will be providing expertise to understand the genetic and molecular components involved in the formation and maintenance of floret development and how this is regulated by environmental signals, including temperature and photoperiod. This research will contribute to WP1 (HLO1.3). Floret number is an indeterminate trait in wheat development and so offers a clear route to increase yield potential in a sustainable and environmentally responsive manner. Dr Dixon's team specialises in the role of environmental signals to control floral development. This includes the early development stages between vegetative and floral inflorescences, which includes floret regulation, through to the timing spike emergence. Our research has developed new methods to regulate vernalization, as well as characterising pathways underpinning temperature regulation. The techniques utilised range from SNP characterisation at the genetic as well as molecular interaction level through to field trial characterisation of new genetic combinations. Through working with the wider team in DSW they will be able to combine expertise to advance our understanding of how to regulate floret number. With this understanding allelic combinations can be deployed to improve wheat yield potential in a sustainable way.

Publications

10 25 50