Exploring adaptive immunity in plants

Lead Research Organisation: Rothamsted Research
Department Name: Unlisted

Abstract

In their struggle for life, plants strongly rely on inducible defense mechanisms. These defense responses become activated when a plant is attacked by harmful pathogens or insects. Induced defence involves a wide spectrum of different chemical and physical defence barriers, ranging from the induction of toxic metabolites that target the attacker's physiology, to cell wall appositions that prevent invasions by pathogenic fungi. Despite this diversity in defensive strategies, the inducible defense arsenal is not always sufficient to protect the plant against intrusion by pathogens and insects. This is why plants have evolved an additional, more sophisticated, defense system that allows them to fine-tune their inducible defense system. Interestingly, this induced resistance is not based on direct defence activation by the inducing agent, but on a faster and stronger activation of inducible defence mechanisms at the moment the plant is exposed to stress. This sensitization for defence is called 'priming'. Because priming allows the plant to adjust its inducible defence system to the environmental conditions, it can be regarded as a form of adaptive immunity. Interestingly, stimulation of the plant's adaptive immune system through priming has already been shown to yield broad-spectrum resistance with minimal reductions in plant growth and seed set. This suggests an important ecological function of plant adaptive immunity, which increases the plant's ability to survive in hostile environments.
The main objectives of this research proposal are to
1) discover novel key mechanisms by which plants exploit their adaptive immune system, and
2) critically evaluate the ecological advantages that adaptive immunity provides for plants under field conditions.
To this end, a multidisciplinary approach will be followed, using state-of-the-art techniques in the field of molecular biology, plant physiology and plant ecology.

Publications

10 25 50