IMRC for Bioprocessing

Lead Research Organisation: University College London
Department Name: Biochemical Engineering


It is now widely accepted that up to ten years are needed to take a drug from discovery to availability for general healthcare treatment. This means that only a limited time is available where a company is able to recover its very high investment costs in making a drug available via exclusivity in the market and via patents. The next generation drugs will be even more complex and difficult to manufacture. If these are going to be available at affordable costs via commercially viable processes then the speed of drug development has to be increased while ensuring robustness and safety in manufacture. The research in this proposal addresses the challenging transition from bench to large scale where the considerable changes in the way materials are handled can severely affect the properties and ways of manufacture of the drug. The research will combine novel approaches to scale down with automated robotic methods to acquire data at a very early stage of new drug development. Such data will be relatable to production at scale, a major deliverable of this programme. Computer-based bioprocess modelling methods will bring together this data with process design methods to explore rapidly the best options for the manufacture of a new biopharmaceutical. By this means those involved in new drug development will, even at the early discovery stage, be able to define the scale up challenges. The relatively small amounts of precious discovery material needed for such studies means they must be of low cost and that automation of the studies means they will be applicable rapidly to a wide range of drug candidates. Hence even though a substantial number of these candidates may ultimately fail clinical trials it will still be feasible to explore process scale up challenges as safety and efficency studies are proceeding. For those drugs which prove to be effective healthcare treatments it will be possible then to go much faster to full scale operation and hence recoup the high investment costs.As society moves towards posing even greater demands for effective long-term healthcare, such as personalised medicines, these radical solutions are needed to make it possible to provide the new treatments which are going to be increasingly demanding to manufature.



10 25 50

Description The methods enable more rapid progression from a life science discovery to a real viable process for manufucature.
Exploitation Route Spin outs are in place and more planned via a HEFCE funded Technology transfer programme
Sectors Healthcare,Manufacturing, including Industrial Biotechology

Description The IMRC research is now embedded in UCL teaching programmes and is central to skills development in graduates going on to a wide range of careers. Hence a bipharma led initiative is starting to have impact in areas such as food bioprocessing and industrial biotechnology.
First Year Of Impact 2019
Sector Agriculture, Food and Drink,Healthcare,Manufacturing, including Industrial Biotechology
Impact Types Economic

Description BSI Commitee member
Geographic Reach National 
Policy Influence Type Membership of a guideline committee
Description EPSRC SAN
Geographic Reach National 
Policy Influence Type Participation in a advisory committee
Impact The EPSRC SAN is instrumental in helping the Council to formulate its research funding priorities
Description Membership of a guideline committee - Elected Management Board Member of BBSRC BioProNet (2015)
Geographic Reach National 
Policy Influence Type Membership of a guideline committee
Impact BioProNet is key to advising and shaping the funding opportunities between BBSRC and EPSRC
Title Ultra scale-down (USD) technologies 
Description CE marked devices (10s mL scale) to mimic the process engineering environment to which biological materials are exposed during large scale manufacture , especially of therapeutics. For example a USD shear device, a USD membrane device Andrea CME Rayat, Alex Chatel, Mike Hoare, Gary J Lye, Ultra scale-down approaches to enhance the creation of bioprocesses at scale: impacts of process shear stress and early recovery stages, Current Opinion in Chemical Engineering, Volume 14, November 2016, Pages 150-157, ISSN 2211-3398, 
Type Of Material Improvements to research infrastructure 
Year Produced 2016 
Provided To Others? Yes  
Impact Prediction for processing mammalian cell broths in industrial continuous flow centrifuges Maximising recovery of novel vaccines. CE marked devices provided largely to researchers in bioprocessing industry via research collaborations 
Company Name Puridify 
Description Puridify's technology, FibroSelect - a novel chromatography reagent, offers significant advantages across key performance attributes that not only allow chromatography associated costs to be reduced by up to 90% but are also well aligned to meet the industry demands today and as the market evolves. 
Year Established 2013 
Impact Puridify have proven at research scale (0.2mL reagent) that their technology can operate at 50x throughput due to better permeability and fast mass transfer. This improves process economics by increasing productivity and is also beneficial when processing labile products. The reagent has shown better resistance than our competitors to impurity fouling and cleaning steps, a common cause of performance degradation over multiple cycles. The technology allows cheap and rapid bioprocess development due to uniform performance at all scales, promoting its adoption in industry.