Cooling of Atoms in Optical Cavities by Collective Dynamics

Lead Research Organisation: University of Leeds
Department Name: Physics and Astronomy

Abstract

Atoms in a standing wave of light experience a periodic potential called an optical lattice. The study of cold atoms in an optical lattice has become a major frontier of cold atom physics over the last few years. We propose to open a new domain of this study by having the standing waves within an optical cavity. This is expected to induce new collective effects through the common coupling of the atoms to a single photon mode. For example, we anticipate that collective effects within a cavity can be expected to cool a large number N of atoms or molecules to very low temperatures. As our initial theoretical [1,2] and first incomplete experimental studies [3,4,5] show, maximum cooling rates are expected in the presence of a red-detuned laser field and when the cavity leakage rate is as large as the square root of N times the single-particle coupling constants. The phonons, describing the movement of the particles inside the optical lattice potential, are then continuously converted into photons, which leak out through the cavity mirrors. The result is an evaporation of the kinetic energy in the system on a time scale given by the very large leakage rate of photons through the resonator mirror. We propose to study the cooling and related collective effects that are expected to occur naturally in these nonlinear quantum systems and to compare experimental results with detailed and newly developed theoretical models. The aim of the proposal is to begin a study of these effects through a collaboration of experimenters and theorists, bringing together expertise in cold atoms, cavity QED, quantum physics, many body systems and non-linear dynamics. [1] A. Beige, P.L. Knight, and G. Vitiello, Cooling Many Particles at Once, New J. Phys. 7, 96 (2005).[2] A. Beige, P.L. Knight, and G. Vitiello, Cooling many particles to very low temperatures, Braz. J. Phys. 35, 403 (2005).[3] J. F. Roch, K. Vigneron, P. Grelu, A. Sinatra, J. P. Poizat, and P. Grangier, Quantum Nondemolition Measurements using Cold Trapped Atoms, Phys. Rev. Lett. 78, 634 (1997). [4] H. W. Chan, A. T. Black, and V. Vuletic, Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity, Phys. Rev. Lett. 90, 063003 (2003).[5] Private communication with Ph. Grangier.

Publications

10 25 50

publication icon
Beige A (2011) New cooling mechanisms for atoms and molecules in Journal of Modern Optics

publication icon
Blake T (2012) Rate-equation approach to cavity-mediated laser cooling in Physical Review A

publication icon
Kurcz A (2009) Sonoluminescence and quantum optical heating in New Journal of Physics

publication icon
Vacanti G (2009) Cooling atoms into entangled states in New Journal of Physics

 
Description Atoms in a standing wave of light experience a periodic potential called an optical lattice. The study of cold atoms in an optical lattice has become a major frontier of cold atom physics over the last few years. We propose to open a new domain of this study by having the standing waves within an optical cavity. This is expected to induce new collective effects through the common coupling of the atoms to a single photon mode. For example, we anticipate that collective effects within a cavity can be expected to cool a large number N of atoms or molecules to very low temperatures. As our initial theoretical [1,2] and first incomplete experimental studies [3,4,5] show, maximum cooling rates are expected in the presence of a red-detuned laser field and when the cavity leakage rate is as large as the square root of N times the single-particle coupling constants. The phonons, describing the movement of the particles inside the optical lattice potential, are then continuously converted into photons, which leak out through the cavity mirrors. The result is an evaporation of the kinetic energy in the system on a time scale given by the very large leakage rate of photons through the resonator mirror. We propose to study the cooling and related collective effects that are expected to occur naturally in these nonlinear quantum systems and to compare experimental results with detailed and newly developed theoretical models. The aim of the proposal is to begin a study of these effects through a collaboration of experimenters and theorists, bringing together expertise in cold atoms, cavity QED, quantum physics, many body systems and non-linear dynamics. [1] A. Beige, P.L. Knight, and G. Vitiello, Cooling Many Particles at Once, New J. Phys. 7, 96 (2005).[2] A. Beige, P.L. Knight, and G. Vitiello, Cooling many particles to very low temperatures, Braz. J. Phys. 35, 403 (2005).[3] J. F. Roch, K. Vigneron, P. Grelu, A. Sinatra, J. P. Poizat, and P. Grangier, Quantum Nondemolition Measurements using Cold Trapped Atoms, Phys. Rev. Lett. 78, 634 (1997). [4] H. W. Chan, A. T. Black, and V. Vuletic, Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity, Phys. Rev. Lett. 90, 063003 (2003).[5] Private communication with Ph. Grangier.
Exploitation Route They might inspire new experiments.
Sectors Digital/Communication/Information Technologies (including Software),Energy,Other

URL http://quince.leeds.ac.uk/~almut/
 
Description EPSRC
Amount £229,141 (GBP)
Funding ID EP/H048901/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start  
 
Description EPSRC
Amount £229,141 (GBP)
Funding ID EP/H048901/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 10/2010 
End 04/2015
 
Description European Science Foundation
Amount £79,692 (GBP)
Funding ID EuroQUAM programme EP/E039863/1 
Organisation European Science Foundation (ESF) 
Sector Charity/Non Profit
Country France
Start  
 
Description European Science Foundation
Amount £79,692 (GBP)
Funding ID EuroQUAM programme EP/E039863/1 
Organisation European Science Foundation (ESF) 
Sector Charity/Non Profit
Country France
Start 10/2007 
End 01/2011