Analysis of Nonlinear Partial Differential Equations
Lead Research Organisation:
University of Oxford
Department Name: Mathematical Institute
Abstract
Partial differential equations (PDEs) are equations that relate the partial derivatives, usually with respect to space and time coordinates, of unknown quantities. They are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of phenomena in the physical, natural and social sciences, often arising from fundamental conservation laws such as for mass, momentum and energy. Significant application areas include geophysics, the bio-sciences, engineering, materials science, physics and chemistry, economics and finance. Length-scales of natural phenomena modelled by PDEs range from sub-atomic to astronomical, and time-scales may range from nanoseconds to millennia. The behaviour of every material object can be modelled either by PDEs, usually at various different length- or time-scales, or by other equations for which similar techniques of analysis and computation apply. A striking example of such an object is Planet Earth itself.Linear PDEs are ones for which linear combinations of solutions are also solutions. For example, the linear wave equation models electromagnetic waves, which can be decomposed into sums of elementary waves of different frequencies, each of these elementary waves also being solutions. However, most of the PDEs that accurately model nature are nonlinear and, in general, there is no way of writing their solutions explicitly. Indeed, whether the equations have solutions, what their properties are, and how they may be computed numerically are difficult questions that can be approached only by methods of mathematical analysis. These involve, among other things, precisely specifying what is meant by a solution and the classes of functions in which solutions are sought, and establishing ways in which approximate solutions can be constructed which can be rigorously shown to converge to actual solutions. The analysis of nonlinear PDEs is thus a crucial ingredient in the understanding of the world about us.As recognized by the recent International Review of Mathematics, the analysis of nonlinear PDEs is an area of mathematics in which the UK, despite some notable experts, lags significantly behind our scientific competitors, both in quantity and overall quality. This has a serious detrimental effect on mathematics as a whole, on the scientific and other disciplines which depend on an understanding of PDEs, and on the knowledge-based economy, which in particular makes increasing use of simulations of PDEs instead of more costly or impractical alternatives such as laboratory testing.The proposal responds to the national need in this crucial research area through the formation of a forward-looking world-class research centre in Oxford, in order to provide a sharper focus for fundamental research in the field in the UK and raise the potential of its successful and durable impact within and outside mathematics. The centre will involve the whole UK research community having interests in nonlinear PDEs, for example through the formation of a national steering committee that will organize nationwide activities such as conferences and workshops.Oxford is an ideal location for such a research centre on account of an existing nucleus of high quality researchers in the field, and very strong research groups both in related areas of mathematics and across the range of disciplines that depend on the understanding of nonlinear PDEs. In addition, two-way knowledge transfer with industry will be achieved using the expertise and facilities of the internationally renowned mathematical modelling group based in OCIAM which, through successful Study Groups with Industry, has a track-record of forging strong links to numerous branches of science, industry, engineering and commerce. The university is committed to the formation of the centre and will provide a significant financial contribution, in particular upgrading one of the EPSRC-funded lectureships to a Chair
Publications

Ammari H
(2010)
Enhanced Resolution in Structured Media
in SIAM Journal on Applied Mathematics

Rindler F
(2009)
Optimal Control for Nonconvex Rate-Independent Evolution Processes
in SIAM Journal on Control and Optimization

Capdeboscq Y
(2009)
Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements
in SIAM Journal on Imaging Sciences

Paicu M
(2011)
Global Existence and Regularity for the Full Coupled Navier-Stokes and Q -Tensor System
in SIAM Journal on Mathematical Analysis

Hudson T
(2015)
Analysis of Stable Screw Dislocation Configurations in an Antiplane Lattice Model
in SIAM Journal on Mathematical Analysis

Melcher C
(2010)
Thin-Film Limits for Landau-Lifshitz-Gilbert Equations
in SIAM Journal on Mathematical Analysis

Chen G
(2012)
Global Steady Subsonic Flows through Infinitely Long Nozzles for the Full Euler Equations
in SIAM Journal on Mathematical Analysis

Chen G
(2021)
Formation of Singularities and Existence of Global Continuous Solutions for the Compressible Euler Equations
in SIAM Journal on Mathematical Analysis

Mielke A
(2014)
An Approach to Nonlinear Viscoelasticity via Metric Gradient Flows
in SIAM Journal on Mathematical Analysis

Chen G
(2009)
Evolution of Discontinuity and Formation of Triple-Shock Pattern in Solutions to a Two-Dimensional Hyperbolic System of Conservation Laws
in SIAM Journal on Mathematical Analysis

Burke S
(2010)
An Adaptive Finite Element Approximation of a Variational Model of Brittle Fracture
in SIAM Journal on Numerical Analysis

Diening L
(2013)
Finite Element Approximation of Steady Flows of Incompressible Fluids with Implicit Power-Law-Like Rheology
in SIAM Journal on Numerical Analysis

Luskin M
(2009)
An Analysis of Node-Based Cluster Summation Rules in the Quasicontinuum Method
in SIAM Journal on Numerical Analysis

Kay D
(2009)
Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection
in SIAM Journal on Numerical Analysis

Chen G
(2017)
Global Weak Rigidity of the Gauss-Codazzi-Ricci Equations and Isometric Immersions of Riemannian Manifolds with Lower Regularity
in The Journal of Geometric Analysis

Helmers M
(2014)
CONVERGENCE OF AN APPROXIMATION FOR ROTATIONALLY SYMMETRIC TWO-PHASE LIPID BILAYER MEMBRANES
in The Quarterly Journal of Mathematics

Menon G
(2010)
Dynamics and self-similarity in min-driven clustering
in Transactions of the American Mathematical Society

Chen G
(2013)
Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows
in Zeitschrift für angewandte Mathematik und Physik

Ding M
(2012)
Local existence and non-relativistic limits of shock solutions to a multidimensional piston problem for the relativistic Euler equations
in Zeitschrift für angewandte Mathematik und Physik

Chen G
(2016)
Incompressible limit of solutions of multidimensional steady compressible Euler equations
in Zeitschrift für angewandte Mathematik und Physik

Chen G
(2012)
Shallow water equations: viscous solutions and inviscid limit
in Zeitschrift für angewandte Mathematik und Physik

Antonietti P
(2009)
Domain Decomposition Methods in Science and Engineering XVIII

Ball J
(2017)
Mathematical Thermodynamics of Complex Fluids

Niethammer B
(2008)
Analysis and Stochastics of Growth Processes and Interface Models

Burke S
(2011)
Approximation and Computation

Chen G
(2011)
Nonlinear Conservation Laws and Applications

Knezevic D
(2009)
BAIL 2008 - Boundary and Interior Layers
Description | This was a broad grant designed to help consolidate research on nonlinear partial differential equations in the UK. In particular the Oxford Centre for Nonlinear PDE was founded as a result of the grant and is now a leading international centre. As regards specific research advances, these were in various areas of applications of PDE, for example to fluid and solid mechnaics, liquid crystals, electromagnetism, and relativity. |
Exploitation Route | Through publications and consultation with current and former members of OxPDE. |
Sectors | Aerospace, Defence and Marine,Chemicals,Construction,Electronics,Energy,Environment |
URL | https://www0.maths.ox.ac.uk/groups/oxpde |
Description | Advanced Investigator Grant |
Amount | € 2,006,998 (EUR) |
Funding ID | 291053 |
Organisation | European Research Council (ERC) |
Sector | Public |
Country | Belgium |
Start | 03/2012 |
End | 03/2017 |