Multi-scale simulation of intense laser plasma interactions

Lead Research Organisation: University of Warwick
Department Name: Physics

Abstract

The UK is at the forefront of high power laser-plasma research through the work of the Central Laser Facility, which has consistently received the highest praise at international review. The recently formed Collaborative Computational Project in plasma physics (CCPP) directs a substantial part of its research effort towards modelling laser-plasma interactions, driven particularly by the existing experimental programme at the CLF and the proposal to extend this to even higher intensities with the Vulcan 10PW project. Two extremely important new developments are the European HiPER project for a laser based inertial confinement fusion demonstrator and the rapidly emerging application of laser-plasmas to light source applications for ultra-short pulses in the X-ray and gamma-ray spectrum. Laboratory applications of ultra-high power laser-plasmas also include medical applications using radiation and particle beams for diagnosis and therapy and the extreme conditions in some of these plasmas serve as laboratory analogues for astrophysical objects.It is vital that computer codes are available to help progress these new developments in plasma physics. The physics accessed by these experiments is often non-linear, relativistic and couples across many orders of magnitude of scale lengths and time scales. To understand the experiments and help improve performance computational modelling is an indispensable tool. The ranges of length and time scales that are relevant to these highly dynamical plasmas make it difficult to model the whole problem with a single numerical technique. For instance, in the case of HiPER fusion targets, MHD fluid models are appropriate during the compression phase, while the ensuing heating and burn phases require detailed kinetic modelling and the transport of particles across a density range of four orders of magnitude. Experiments planned for the Vulcan 10PW laser will probe quantum electrodynamic (QED) phenomena at the scale of the electron Compton length while laboratory experiments on magnetic reconnection may involve lengths up to 1 cm. There is still no single method which is applicable to the entirety of circumstances of laser plasma experiments but the Particle in Cell method (PIC) is remarkably robust, immediately useful for many of the high intensity experiments, and has the potential to be extended at short length scales towards the quantum regime and also at long scales towards the fluid regime using methods which, while very different in terms of physics, are similar in terms of the computational requirements.This exploration of new regimes of plasma physics requires new software to be developed to include this new physics. This project will extend the current codes used for plasma simulations in several directions. They will be optimised to make use of the largest computers, using 1000's of processor on national supercomputing facilities. The codes will be extend to include particle collisions in a novel, and fast, way enabling the extension to longer lengths and time scales. Including QED effects will extend their applicability down to shorter scale lengths and more intense lasers. Radiation from individual electrons, including coherent radiation, will help probe the new regimes expected to deliver the next generation of short pulse light sources. Finally all of this will be combined into a single computational tool allowing UK plasma physicists to easily exploit the tools they need to understand the next generation of experiments and establish a world leading role for UK computational laser plasma physics to compliment it's already established reputation in experimental laser plasma science.
 
Description There has been considerable international interest in a community plasma code for particle-in-cell (PIC) simulations. Understanding the community needs has lead to the development of an open project based on a modern redesign of PIC techniques. The resulting EPOCH code has re-invigorated this area of computational physics. Work on the EPOCH project continues through follow on EPSRC funding.
Exploitation Route The EPOCH is freely available world-wide with hundreds of international users in addition to its use in all UK plasma physics research groups. The key paper describing EPOCH is cited around 100 times per year with the EPOCH code used in roughly 40 papers per year. The development of EPOCH continues to be funded by EPSRC and the large community of users and developers is expected to keep EPOCH central to UK plasma physics research for at least a decade.
Sectors Communities and Social Services/Policy,Education,Electronics,Energy

URL https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch/wikis/home
 
Description To handle the data from this project a new data format was developed (SDF). This is now used by one UK SME, Fluid Gravity limited, for their commercial codes. SDF is now released through GitHub. SDF allows complex data from HPC simulations to be easily ported between visualisation tools, HPC systems and applications. This has helped Fluid Gravity ltd. improve and harmonise their data management and has defined a standard for plasma physics with Warwick research. Beneficiaries: UK plasma physics code developers and UK SME Contribution Method: It replaced the existing data format used by SME in their commercial codes
First Year Of Impact 2012
Sector Aerospace, Defence and Marine,Education,Energy
Impact Types Economic

 
Description CCP Flagship Project
Amount £380,448 (GBP)
Funding ID EP/M011534/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 04/2015 
End 03/2018
 
Description Centre for Computational Plasma Physics
Amount £264,129 (GBP)
Organisation Atomic Weapons Establishment 
Sector Private
Country United Kingdom
Start 10/2017 
End 09/2022
 
Description Centre for Computational Plasma Physics
Amount £326,643 (GBP)
Funding ID Contract V30286915 
Organisation Atomic Weapons Establishment 
Sector Private
Country United Kingdom
Start 07/2014 
End 06/2017
 
Description Extension and optimisation of the EPOCH code
Amount £236,478 (GBP)
Funding ID EP/P02212X/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 06/2017 
End 05/2019
 
Description Multi-scale simulations of intense laser-plasma interactions
Amount £439,082 (GBP)
Funding ID EP/G054940/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2010 
End 03/2014
 
Description Plasma Physics HEC Consortia
Amount £279,000 (GBP)
Funding ID EP/L000237/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2013 
End 05/2018
 
Description The Plasma-CCP Network
Amount £125,995 (GBP)
Funding ID EP/M022463/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 07/2015 
End 06/2020
 
Title Release of EPOCH code 
Description Release of the EPOCH particle-in-cell code as a publicly available software package. EPOCH has been developed primarily at the University of Warwick as a multi-purpose plasma simulation code. QED algorithms and code to model gamma-ray and electron-positron pair production were developed at Oxford. Warwick implemented the QED package in the publicly released version of EPOCH. The fully documented code is available at https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch. It is being used by experimentalists and theorists from many countries. This initial release of EPOCH was in 2011 but this is continually updated. 
Type Of Technology Software 
Year Produced 2016 
Open Source License? Yes  
Impact The UK is now recognised as a world leading centre for kinetic plasma simulations for laser-plasmas 
URL https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch