Multi-object, high-throughput, spectro-microscopy

Lead Research Organisation: University of Glasgow
Department Name: School of Physics and Astronomy


Microscopy is a pervasive technology with applications from biology to material and nanoscience. At their heart, microscopes are predominately based on high numerical aperture, short focal length objective lenses producing images that can be seen by eye and/or electronically recorded, typically with 3-colour CCD cameras or a selection of coloured filters, but leaving the full spectral details unknown.We plan to revolutionise the field of spectroscopic microscopy by developing a technology that will provide full colour spectrum, simultaneously from many points within a sample. To record high resolution (spatially and spectral) spectra across an extended field of view with a conventional microscope one currently employs a time-sequential recording technique: either a spectrally dispersed image of a single point or a line is scanned across the scene, or an extended image is recorded through a spectrally scanned filter, both methods being comparatively slow. We propose to develop a novel approach combining all the advantages of the existing methods into a single unit: i.e. a system with both high spatial, spectral, and temporal resolution. Although real-time, high-resolution spectral imaging has been a goal for many years no existing approach comes close to this combination of features. Of those techniques that record spectral and image data simultaneously, the Computed Tomographic Imaging Spectrometer (CTIS) is of most interest. However our technique is superior because it can view the whole field indiscriminately, rather than specific regions, it is has a superior signal to noise ratio, and, most importantly, it has ~1000 spectral channels as opposed to ~50. This project will develop a demonstrator and benchmark it against challenging problems in bio microscopy, spectroscopy and security, including multipoint SERS and Raman microscopy, and spectroscopically contrasted imaging in a range of biological samples.


10 25 50
Description see web site and associated papers and press coverage
Exploitation Route see web site and associated papers and press coverage
Sectors Other

Description see web site and associated papers and press coverage
First Year Of Impact 2010
Sector Other
Impact Types Cultural,Economic

Title A multi-object spectral imaging instrument 
Type Of Material Database/Collection of data 
Year Produced 2015 
Provided To Others? Yes