University College London - Equipment Account

Lead Research Organisation: University College London
Department Name: Office of Vice Provost Research

Abstract

Catalysis is a core area of contemporary science posing major fundamental and conceptual challenges, while being at the heart of the chemical industry - an immensely successful and important part of the overall UK economy (generating in excess of £50 billion per annum). UK catalytic science currently has a strong presence, but there is intense competition in both academic and industrial sectors, and a need for UK industrial activity to shift towards new innovative areas posing major challenges for the future. In light of these challenges the Centre for Catalytic Science endeavours to become a leading institution, both nationally and internationally, in the field and acts to coordinate, promote and advance the UK catalysis research portfolio. The Centre is located on the RAL campus which will allow us both to work closely with the central facilities, to whose development the project will also contribute, and to interact with and contribute to the broader scientific community. The major developments in the in situ characterisation of catalytic materials that have taken place in the recent years have been of immense importance in addressing the complex scientific problems posed by catalytic science The Centre will therefore in pursuing a wide ranging programme of research in catalytic science, develop state-of-the art in situ facilities that will be used for experiments to be conducted at the Diamond, Synchrotron Radiation, ISIS Neutron Scattering and Central Laser Facilities. Such experiments will allow us to probe the structure and evolution of catalysts at the molecular level during their operation; but their effectiveness will require the on-line studies to be integrated with off line experimentation in the Complex, within which we will establish a broad range of experimental facilities.

The research areas that have been outlined as major themes within the Centre for Catalytic Science are sustainable catalyst technologies for organic transformations, catalysisfor alternative fuels, and catalysis in the protection of the environment. The Centre for Catalytic Science will set-up collaborative research programmes to tackle these major themes and exploit the unrivalled collective expertise the consortium has in catalyst design, testing and characterisation. Moreover, the Centre will be able to make substantial advances by working closely with scientists from ISIS and Diamond to effectively utilise the world-leading facilities present on the RAL campus.

Planned Impact

The proposed research is aimed at gaining new knowledge of how catalysts function at the molecular level. As such, it will be of major benefit to the UK and international groups in catalytic science and in cognate fields in materials and bioscience. The relevance and impact on industrial research will also be substantial , and by maintaining the strength of UK catalytic science it will make a broader underpinning contribution to the UK economy. By contributing to facility development the project will also benefit a wide user community. The work will be disseminated by standard academic routes - publication in journals of the highest quality (in which the applicants have an excellent track record) and at conferences. Additionally we will make appropriate use of the media and web to publicise the new science. The applicants have strong and wide networks of collaboration, assisting effective dissemination, which will be further enhanced by the proposed visitors programme and through an annual workshop on catalytic science at the Centre. More generally, we aim to make the Centre a major hub for catalytic science on the world stage.

The equipment detailed in this proposal will see significant benefits in the near term, with all items in effective operation by the start of the forthcoming academic year. These items will significantly aid the discovery of novel catalyst materials, which will have industrially relevant applications in the fields of sustainable organic transformations, energy generation, and environmental protection.

Societal impact will follow from advances enabled by the research in sustainable manufacturing leading to greener and cleaner processes and products with reduced environmental impact. Contributions will also be made to the provision of sustainable energy and reductions in energy demands of manufacturing sectors. Additional societal impact will follow from the role of the fundamental research undertaken by the Centre in assisting the development of advanced routes to new pharmaceutical products.

The UK economy will benefit from the role of the Centre in assisting innovation in catalysis manufacture. The large and successful chemical sector, including over 3200 companies and a dynamic SME component, faces intense international competition. The collaborations and interactions both within the Centre and between the Centre and Industry will promote economic impact, which will extend beyond the chemical sector to industries that rely on advances in materials and processes, including automotive, aerospace and electronics sectors.

Knowledge exchange will be vigorously promoted by the Centre through greater integration between the participating research groups and their extensive networks of collaborations and with scientists and facilities on the Harwell/RAL campus. This exchange will lead to scientific advances not only in the development of state-of-the-art equipment but also in sustainable chemical processes. The people benefits and impact will be substantial by the provision of trained research workers whose skills will be necessary for R&D programmes required for market innovation to occur.The management and dissemination plans are designed to maximise impact. The Management Board at the Centre will monitor and advise on impact and the annual dissemination conference will be aimed at the key beneficiaries. The collaborating team have wide ranging experience in the dissemination of their science and the promotion of its impact.

Publications

10 25 50

publication icon
Chapman S (2018) Comprehensive Vibrational Spectroscopic Characterization of Nylon-6 Precursors for Precise Tracking of the Beckmann Rearrangement. in Chemphyschem : a European journal of chemical physics and physical chemistry

 
Description We have developed new research facilities at UCL in the area of nanotechnology and robotics as well as new experiments commissioned at Diamond Light Source for users across the UK Catalysis Hub, the first of this kind in the UK.
Exploitation Route Where appropriate equipment is currently listed on UCL's Research Equipment Catalogue. The relevant equipment managers will keep the equipment information up to date and will look to open access to a wider range of users.
Sectors Aerospace, Defence and Marine,Communities and Social Services/Policy,Creative Economy,Electronics,Environment,Healthcare,Manufacturing, including Industrial Biotechology,Culture, Heritage, Museums and Collections

 
Description The strategic equipment was used to purchase a range of chromatographic analysis equipment (HPLC, GC, GC-MS), reactor testing systems (batch and fixed bed reactors) and a rapid scanning FTIR with in situ sample environment for combined XAFS/DRIFTS studies. The equipment was purchased during 2013, with the science program starting in earnest in 2014. The equipment is beginning to make significant contributions to understanding the properties of catalysts during reaction conditions, with the initial publications in 2015. The portfolio of work the equipment underpins is making a valuable input into the fields of environmental protection (e.g. emission control, deNOx and CH4 combustion), sustainable fuels (e.g. upgrading of bio-glycerol, methanol synthesis), and production of commodity chemicals (e.g. methanol oxidation to formaldehyde).
 
Description Industrial CASE Award
Amount £69,524 (GBP)
Organisation Johnson Matthey 
Sector Private
Country United Kingdom
Start 01/2015 
End 01/2018
 
Title XAFS DRIFTS methods 
Description WE have developed a flow system, gas handling and use of a DRIFS spectrometer in combination with XAFS ( at both diamond light source and ESRF) to study insitu and operando catalysis reactions looking at the reaction and structure of the catalysis to increase mechanistic and fundamental understanding of catalytic processes the expertise and equipment through BLock access to B18 on diamond light-source is now available as a resource for the community 
Type Of Material Improvements to research infrastructure 
Year Produced 2016 
Provided To Others? Yes  
Impact A number of publications have arisen from this research tool, additional funding for development of a flow Cell as been secured as an INDUSTRIAL CASE award 
 
Description Collaboration with Johnson Matthey 
Organisation Johnson Matthey
Country United Kingdom 
Sector Private 
PI Contribution Johnson Matthey have placed a research fellow within the catalysis hub which has lead to a number of scientific advancements for both parties, , and events including the neutrons for catalysis workshop whihc was run between Johnson Matthey, the UK catalysis Hub and ISIS. Collaborations with the UK catalysis HUb ave lead to Johnson Matheys having increased interaction with Diamond and ISIS and CLF including developing new capability and discovering new techniques. It also lead to the appopintment of a IMPACT fellow from Johnson Matthey ~( Rachel O'malley) as part of the Impact acceleeration grant
Collaborator Contribution JM have provided materials precursors and contrbuted to a number of projects intallectualy and finacially including awarding of several case Phd Projects
Impact Chemistry, materials science
Start Year 2014
 
Description 2 talks atXAFS 2015 Karlsruhe, Germany, September 2015 - oral presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact 2 taks on XAFS and XAFS/Drifts at the confernce
Year(s) Of Engagement Activity 2015
 
Description Leading a Faraday Discussion on Catalysis organised by the RSC April 2016 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Designing New Heterogeneous Catalysts: Faraday Discussion
4 - 6 April 2016, London, United Kingdom
Catalysis is a core area of contemporary science posing major fundamental and conceptual challenges, while being at the heart of the chemical industry. It is a major theme in chemical sciences and engineering that underlies much of the key research and teaching in these subjects.
At this discussion, we will bring the catalysis community together to discuss the theme of designing new heterogeneous catalysts. Catalysis plays a crucial part in the production of 80% of all manufactured goods. We will explore the modern methods used to design new catalysts and how the approaches can bridge across the disciplines of physical sciences and chemical engineering
Themes
Catalyst design from theory to practice
In this session, we will explore how modern theoretical methods are aiding the design of new heterogeneous catalysts. This will invariably provide interplay between mechanism and the active site
Designing new catalysts: synthesis of new active structures
In this session, we will discuss ways in which new nanoparticulate structures can play a role in designing new active centres. How they can be prepared and their catalytic properties explored
Bridging model and real catalysts
We will discuss how modern methods in surface science and microscopy can aid the design of new catalysts. Recent advances in methodologies are enabling model surface science studies and real catalysts come closer together. This session will explore the nature of active catalyst sites
Application of novel catalysts
In this session we aim to show how new catalyst designs can find important applications that address key challenges facing society at this time, such as energy and water purification
Year(s) Of Engagement Activity 2016
URL http://www.rsc.org/events/detail/16840/designing-new-heterogeneous-catalysts-faraday-discussion
 
Description Oral presentation and poster at Operando V, Deauville, France May 2015 - poster 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact E gibson )Catalysis Hub) and P Wells (Catalysis at Harwell) gave excellent talks on techniques developed by the hub and the centre at Harwell
Year(s) Of Engagement Activity 2015
 
Description Organiation and participation of a Royal society Discussion meeting Catalysis improving society 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact The successful operation of catalysis lies at the heart of the wellbeing of society and this meeting will address modern developments in designing improved catalysts especially in non traditional application areas such as water purification. We will bring together scientists across the breadth of catalysis (heterogeneous, homogeneous and bio) bridging the expertise of chemists, engineers, bio-scientists and theoreticians.
Year(s) Of Engagement Activity 2015
URL https://royalsociety.org/science-events-and-lectures/2015/06/catalysis-dm/
 
Description ROyal Society Summer Science Exhibition - Zoom for improvement 2017 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact Royal society summer sicience exhibition - Zoom for improvement Catalysis is everywhere - it makes chemical reactions more efficient and faster, so we can produce more products that we need for a cheaper price. The fuel in your car has been made from crude oil, using a series of catalytic reactions to allow the fuel to flow and burn correctly, delivering energy to your car. The gases produced are processed in the car's catalytic converter which uses catalysis to transform polluting carbon and nitrogen oxides that are the result of burning the fuel into environmentally benign compounds. Over 80% of the nitrogen in the proteins in your body has been derived from fertilizers produced using catalysis.

We are working in the 'Green Chemistry' research field, working to realise a sustainable future for the world. We want to understand catalysis and the materials we use to produce everyday goods and energy - and to produce fuels and other chemicals using renewable resources from plant material. We want to move to a more sustainable economy where the things we use and the energy we need is produced in a renewable way.

Because catalysis is a molecule by molecule process, we need to understand how it works and study materials at the level of individual atoms using very powerful 'electron microscopes'. We also use very high energy light to look at catalysts at this scale while they are working, to understand and improve catalyst materials. We are recreating industrial conditions in the lab and are working out what makes a good or bad catalyst. We have discovered that the most promising catalysts are solids containing molecules called nanoparticles.

Our research is revealing more about catalysis and how it can help us move towards a more sustainable future
Year(s) Of Engagement Activity 2017
URL https://royalsociety.org/science-events-and-lectures/2017/summer-science-exhibition/exhibits/zoom-fo...
 
Description Spotlight on drifts 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact this is an informative piece and lead to more use of the machine
Year(s) Of Engagement Activity 2018
URL https://www.ses.ac.uk/2017/09/27/drifts-spectrometer/
 
Description UK Catalysis Hub Conferences 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Other audiences
Results and Impact The Catalysis Hub runs two conferences per year for members of the Hub and for the wider catalysis community. These conferences showcase catalysis research focusing on the work of the Hub. Speakers include researchers from the Catalysis Hub and internationally renowned speakers and industrialists who cover a range of topics including biocatalysis, homogeneuos and heterogeneous catalysis, reaction engineering and industrial catalysis. In addition, poster sessions highlights the projects across the Hub and provide a lively forum for discussion and dissemination of catalytic science.
One aim of the UK Catalysis Hub is to develop the next generation of researchers. To facilitate this aim, the UK Catalysis Hub arranges an annual summer conference focusing on providing a forum for the research associates to present their work and interact. Attendance at the conferences is consistently over 100 people. Dinner speakers have included EPSRC, international academics and industrialists
Year(s) Of Engagement Activity 2013,2014,2015,2016,2017