Boiling in microchannels: integrated design of closed-loop cooling system for devices operating at high heat fluxes

Lead Research Organisation: University of Edinburgh
Department Name: Sch of Engineering

Abstract

Current developments and future trends in small-scale devices used in a variety of industries such as electronic equipment and micro-process and refrigeration systems, place an increasing demand for removing higher thermal loads from small areas. In some cases further developments are simply not possible unless the problem of providing adequate cooling is resolved. The progression from air to liquid and specifically flow boiling to transfer the high heat fluxes generated is thus the only possible way forward. Evaporative cooling can, not only transfer these loads but also offer greater temperature uniformity since the working fluid can be (in a carefully designed system) at a constant saturation temperature. The consideration of microchannel flow boiling processes has been made possible by developments in microfabrication techniques both in metals and substances such as silicon. However, there still remain fundamental fluid flow and heat transfer related questions that need to be addressed before a wider use of these micro heat exchangers is possible in industry. The specific challenges that will be researched - both fundamental and practical in nature - include flow instabilities and mal-distribution which are the result of interaction between the system manifolds and the external circuit. These can lead to flow reversal and dry-out in the heat exchanger with subsequent drastic reduction in heat transfer rates. The understanding of the fundamental physical phenomena and their relevance to industrial designs is one of the focal points and constitutes one of the major challenges of the proposed research. The effect of other parameters such as inlet sub-cooling, which again relates not only to the micro-heat exchanger itself but also to the overall design, will be addressed along with material/surface characteristics through the use of both metallic and silicon microchannels.

The work proposed will include carefully contacted detailed experiments measuring relevant parameters such as local heat flux, temperature and pressure combined with flow visualization through industrially available and purposely developed and manufactured sensors. The research teams will not only develop or adapt advanced instruments for accurate measurements at these small scales but also develop new three-dimensional numerical tools capable of capturing the extremely complex physical phenomena at, for example the triple-line (vapour-liquid-solid). These techniques will not only help elucidate the current phenomena but can find wide application in similar research, both in thermal and biomedical flows.

The proposal brings together two teams of academics working both in microfabrication/sensors and two-phase flow supported by industry (Thermacore, Selex Galileo, Sustainable Engine Systems and Rainford Precision) to tackle some of the key fundamental challenges that will enable a wider adoption of this cooling method hence meeting current and future needs in the industry. The proposed research will also have a wider impact on energy conservation and environmental footprint trough, for example, more efficient thermal management of data/supercomputing centres around the world that can lead to a reduction in energy consumption and reuse of heat that would otherwise be rejected.

Publications

10 25 50
 
Description In order to develop a thermal management solution for current and future generation of electronics, and to to use flow boiling in microchannels, flow instabilities and hot spots needs to be understood and incorporated in the design.
We have shown that thermal instabilities can be minimised through specific design of the channels and manifolds.
Also the role of the interaction between the liquid and the substrate has been elucidated.
Exploitation Route Academics will use all the fundamental insights about wettability of liquids and their interaction with hot surfaces.
Industrial partners can incorporate our findings about flow instabilities and hot spots evolution in their future designs of cooling solutions.
Sectors Aerospace, Defence and Marine,Electronics,Energy

 
Description The experimental data generated in this project about wettability of surfaces as well as bubble dynamics in microchannels has been communicated to our industrial partners in the regular progress meetings. Amongst these partners are Selex Galileo and Thermacore Europe. The operating conditions and range of parameters are being used by Thermacore Europe to design a prototype demonstrator unit. Selex Galileo has also taken our data on board to resolve some of the issues related to cooling of their electronics racks.
First Year Of Impact 2015
Sector Aerospace, Defence and Marine
Impact Types Economic

 
Description Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
Amount £536,300 (GBP)
Funding ID EP/S019588/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 08/2019 
End 07/2022
 
Description Flow Boiling and Condensation of Mixtures in Microscale
Amount £387,042 (GBP)
Funding ID EP/N011341/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 03/2016 
End 02/2019
 
Description Coolboration with teh International Centre for Carbon Neutral Energy Research (I2CNER) at Kyushu University, Japan 
Organisation Kyushu University
Country Japan 
Sector Academic/University 
PI Contribution The collaboration started in 2015 when Profesor K. Sefiane was awarded a Progress100 grant by Kyushu University to support collaboration between the two Universities. The initial grant was for 18 months. Professor Sefiane has been succesful in renewing this grant in 2018 for another 3 years.#The funding provided support to appoint a research assistant at Kyushu University and pay for travel expenses between Edinburgh and Kyushu for staff from the two groups.
Collaborator Contribution Two research awards: 2015-2016 2018-2021 The total amounts of these two awards was about 100,000 £.
Impact J Chen, YH; Askounis, A; Koutsos, V; Valluri, P; Takata, Y; Wilson, SK; Sefiane, K Chen, Yuhong; Askounis, Alexandros; Koutsos, Vasileios; Valluri, Prashant; Takata, Yasuyuki; Wilson, Stephen K.; Sefiane, Khellil On the Effect of Substrate Viscoelasticity on the Evaporation Kinetics and Deposition Patterns of Nanosuspension Drops LANGMUIR 0743-7463 JAN 14 2020 36 1 204 213 10.1021/acs.langmuir.9b02965 WOS:000507721200022 31860312 J Zhang, HC; Kita, Y; Zhang, DJ; Nagayama, G; Takata, Y; Sefiane, K; Askounis, A Zhang, Huacheng; Kita, Yutaku; Zhang, Dejian; Nagayama, Gyoko; Takata, Yasuyuki; Sefiane, Khellil; Askounis, Alexandros Drop Evaporation on Rough Hot-Spots: Effect of Wetting Modes HEAT TRANSFER ENGINEERING Kita, Yutaku/AAC-5533-2020; Askounis, Alexandros/O-9585-2014 Kita, Yutaku/0000-0003-4994-4689; Askounis, Alexandros/0000-0003-0813-7856; , nagayamakit/0000-0002-6836-9387 0145-7632 1521-0537 10.1080/01457632.2019.1640458 AUG 2019 WOS:000480615200001 J Wang, ZY; Orejon, D; Sefiane, K; Takata, Y Wang, Zhenying; Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki Coupled thermal transport and mass diffusion during vapor absorption into hygroscopic liquid desiccant droplets INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER Orejon, Daniel/G-4468-2013 Orejon, Daniel/0000-0003-1037-5036; Wang, Zhenying/0000-0002-2651-1808 0017-9310 1879-2189 MAY 2019 134 1014 1023 10.1016/j.ijheatmasstransfer.2019.01.084 WOS:000462418300086 J Wang, ZY; Orejon, D; Sefiane, K; Takata, Y Wang, Zhenying; Orejon, Daniel; Sefiane, Khellil; Takata, Yasuyuki Water vapor uptake into hygroscopic lithium bromide desiccant droplets: mechanisms of droplet growth and spreading PHYSICAL CHEMISTRY CHEMICAL PHYSICS Orejon, Daniel/G-4468-2013 Orejon, Daniel/0000-0003-1037-5036; Wang, Zhenying/0000-0002-2651-1808 1463-9076 1463-9084 JAN 21 2019 21 3 10.1039/c8cp04504f WOS:000456147000073 30320327 J Kita, Y; Dover, CM; Askounis, A; Takata, Y; Sefiane, K Kita, Yutaku; Dover, Coinneach Mackenzie; Askounis, Alexandros; Takata, Yasuyuki; Sefiane, Khellil Drop mobility on superhydrophobic microstructured surfaces with wettability contrasts SOFT MATTER Askounis, Alexandros/O-9585-2014; Kita, Yutaku/AAC-5533-2020 Askounis, Alexandros/0000-0003-0813-7856; Kita, Yutaku/0000-0003-4994-4689 1744-683X 1744-6848 DEC 14 2018 14 46 9418 9424 10.1039/c8sm01762j WOS:000451843300013 30427033 J Kita, Y; Okauchi, Y; Fukatani, Y; Orejon, D; Kohno, M; Takata, Y; Sefiane, K Kita, Yutaku; Okauchi, Yuya; Fukatani, Yuki; Orejon, Daniel; Kohno, Masamichi; Takata, Yasuyuki; Sefiane, Khellil Quantifying vapor transfer into evaporating ethanol drops in a humid atmosphere PHYSICAL CHEMISTRY CHEMICAL PHYSICS Kita, Yutaku/AAC-5533-2020; Orejon, Daniel/G-4468-2013 Kita, Yutaku/0000-0003-4994-4689; Orejon, Daniel/0000-0003-1037-5036 1463-9076 1463-9084 AUG 7 2018 20 29 19430 19440 10.1039/c8cp02521e WOS:000448132600017 29993049 J Tomo, Y; Askounis, A; Ikuta, T; Takata, Y; Sefiane, K; Takahashi, K Tomo, Yoko; Askounis, Alexandros; Ikuta, Tatsuya; Takata, Yasuyuki; Sefiane, Khellil; Takahashi, Koji Superstable Ultrathin Water Film Confined in a Hydrophilized Carbon Nanotube NANO LETTERS Askounis, Alexandros/O-9585-2014 Askounis, Alexandros/0000-0003-0813-7856; Tomo, Yoko/0000-0001-6002-1506 1530-6984 1530-6992 MAR 2018 18 3 1869 1874 10.1021/acs.nanolett.7b05169 WOS:000427910600043 29424547 J Barletta, A; Bejan, A; Briggs, A; Cavallini, A; Cotta, R; Garimella, S; Glicksman, L; Hewitt, G; Karayiannis, T; Manglik, R; Minkowycz, WJ; Sefiane, K; Takata, Y; Thome, J; Utaka, Y; Wang, HS; Yoshida, H Barletta, Antonio; Bejan, Adrian; Briggs, Adrian; Cavallini, Alberto; Cotta, Renato; Garimella, Srinivas; Glicksman, Leon; Hewitt, Geoffrey; Karayiannis, Tassos; Manglik, Raj; Minkowycz, W. J.; Sefiane, Khellil; Takata, Yas; Thome, John; Utaka, Yoshio; Wang, Huasheng; Yoshida, Hideo Professor John W. Rose BScEng PhD DScEng(Lond) CEng FIMechE FASME on his 80th birthday In Celebration INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER Barletta, Antonio/O-8888-2019; Cotta, Renato M/H-5336-2012; Bejan, Adrian/D-3909-2012; Utaka, Yoshio/Q-8596-2019 Cotta, Renato M/0000-0003-0965-0811; Bejan, Adrian/0000-0002-2419-2698; 0017-9310 1879-2189 SEP 2017 112 169 170 10.1016/j.ijheatmasstransfer.2017.04.038 WOS:000404198600016 J Askounis, A; Kita, Y; Kohno, M; Takata, Y; Koutsos, V; Sefiane, K Askounis, Alexandros; Kita, Yutaku; Kohno, Masamichi; Takata, Yasuyuki; Koutsos, Vasileios; Sefiane, Khellil Influence of Local Heating on Marangoni Flows and Evaporation Kinetics of Pure Water Drops LANGMUIR Kita, Yutaku/AAC-5533-2020; Askounis, Alexandros/O-9585-2014; Koutsos, Vasileios/B-9651-2008 Kita, Yutaku/0000-0003-4994-4689; Askounis, Alexandros/0000-0003-0813-7856; Koutsos, Vasileios/0000-0002-2203-8179 0743-7463 JUN 13 2017 33 23 5666 5674 10.1021/acs.langmuir.7b00957 WOS:000403530200008 28510453 J Yamada, Y; Askounis, A; Ikuta, T; Takahashi, K; Takata, Y; Sefiane, K Yamada, Yutaka; Askounis, Alexandros; Ikuta, Tatsuya; Takahashi, Koji; Takata, Yasuyuki; Sefiane, Khellil Thermal conductivity of liquid/carbon nanotube core-shell nanocomposites JOURNAL OF APPLIED PHYSICS Askounis, Alexandros/O-9585-2014 Askounis, Alexandros/0000-0003-0813-7856 0021-8979 1089-7550 JAN 7 2017 121 1 015104 10.1063/1.4973488 WOS:000392839400041
Start Year 2015
 
Description Two Phase Flow and Heat Transfer at the Microscale, University of Valenciennes, France 
Organisation University of Valenciennes and Hainaut-Cambresis
Country France 
Sector Academic/University 
PI Contribution This collaboration has led to University of Velenciennes contributing to fund half of a PhD studentship to work on this project.
Collaborator Contribution Our partners in Valenciennes funded partly a PhD student who did a joint PhD degree between Edinburgh and Valenciennes.
Impact Korniliou, S; Mackenzie-Dover, C; Harmand, S; Duursma, G; Christy, JRE; Terry, JG; Walton, AJ; Sefiane, K Korniliou, S.; Mackenzie-Dover, C.; Harmand, S.; Duursma, G.; Christy, J. R. E.; Terry, J. G.; Walton, A. J.; Sefiane, K. Local wall temperature mapping during flow boiling in a transparent microchannel INTERNATIONAL JOURNAL OF THERMAL SCIENCES 1290-0729 1778-4166 JAN 2019 135 344 361 10.1016/j.ijthermalsci.2018.09.028 WOS:000466262700028 J Parsa, M; Harmand, S; Sefiane, K Parsa, Maryam; Harmand, Souad; Sefiane, Khellil Mechanisms of pattern formation from dried sessile drops ADVANCES IN COLLOID AND INTERFACE SCIENCE Parsa, Maryam/E-4565-2015 Parsa, Maryam/0000-0001-6390-710X 0001-8686 1873-3727 APR 2018 254 22 47 10.1016/j.cis.2018.03.007 WOS:000432101400002 29628116 J Parsa, M; Harmand, S; Sefiane, K; Bigerelle, M; Deltombe, R Parsa, Maryam; Harmand, Souad; Sefiane, Khellil; Bigerelle, Maxence; Deltombe, Raphael Effect of Substrate Temperature on Pattern Formation of Bidispersed Particles from Volatile Drops JOURNAL OF PHYSICAL CHEMISTRY B Parsa, Maryam/E-4565-2015; Bigerelle, Maxence/V-4132-2019 Parsa, Maryam/0000-0001-6390-710X; 1520-6106 DEC 7 2017 121 48 11002 11017 10.1021/acs.jpcb.7b09700 WOS:000417672200026 29135258 J Benselama, AM; Harmand, S; Sefiane, K Benselama, Adel M.; Harmand, Souad; Sefiane, Khellil Thermocapillary effects on steadily evaporating contact line: A perturbative local analysis (vol 24, 072105, 2012) PHYSICS OF FLUIDS 1070-6631 1089-7666 NOV 2017 29 11 119901 10.1063/1.5006992 WOS:000416067400049 J Parsa, M; Boubaker, R; Harmand, S; Sefiane, K; Bigerelle, M; Deltombe, R Parsa, Maryam; Boubaker, Riadh; Harmand, Souad; Sefiane, Khellil; Bigerelle, Maxence; Deltombe, Raphael Patterns from dried water-butanol binary-based nanofluid drops JOURNAL OF NANOPARTICLE RESEARCH Bigerelle, Maxence/V-4132-2019; Parsa, Maryam/E-4565-2015 Parsa, Maryam/0000-0001-6390-710X 1388-0764 1572-896X JUL 28 2017 19 8 268 10.1007/s11051-017-3951-2 WOS:000410841300001 J Duursma, G; Sefiane, K; Dehaene, A; Harmand, S; Wang, Y Duursma, Gail; Sefiane, Khellil; Dehaene, Alexandre; Harmand, Souad; Wang, Yuan Flow and Heat Transfer of Single-and Two-Phase Boiling of Nanofluids in Microchannels HEAT TRANSFER ENGINEERING 13th UK Heat Transfer Conference SEP 02-03, 2013 Imperial Coll London, London, ENGLAND Energy Futures Lab Imperial Coll London 0145-7632 1521-0537 SEP 22 2015 36 14-15 SI 1252 1265 10.1080/01457632.2014.994990 WOS:000352344100009 J Parsa, M; Harmand, S; Sefiane, K; Bigerelle, M; Deltombe, R Parsa, Maryam; Harmand, Souad; Sefiane, Khellil; Bigerelle, Maxence; Deltombe, Raphael Effect of Substrate Temperature on Pattern Formation of Nanoparticles from Volatile Drops LANGMUIR Bigerelle, Maxence/V-4132-2019; Parsa, Maryam/E-4565-2015 Parsa, Maryam/0000-0001-6390-710X; Maxence, Bigerelle/0000-0002-4144-245X 0743-7463 MAR 24 2015 31 11 3354 3367 10.1021/acs.langmuir.5b00362 WOS:000351792800009 25742508 J Wang, Y; Sefiane, K; Wang, ZG; Harmand, S Wang, Yuan; Sefiane, Khellil; Wang, Zhen-guo; Harmand, Souad Analysis of two-phase pressure drop fluctuations during micro-channel flow boiling INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 0017-9310 1879-2189 MAR 2014 70 353 362 10.1016/j.ijheatmasstransfer.2013.11.012 WOS:000330814800036 J Benselama, AM; Harmand, S; Sefiane, K Benselama, Adel M.; Harmand, Souad; Sefiane, Khellil Thermocapillary effects on steadily evaporating contact line: A perturbative local analysis PHYSICS OF FLUIDS 1070-6631 1089-7666 JUL 2012 24 7 072105 10.1063/1.4732151 WOS:000308406000006 J Wang, Y; Sefiane, K; Harmand, S Wang, Yuan; Sefiane, Khellil; Harmand, Souad Flow boiling in high-aspect ratio mini- and micro-channels with FC-72 and ethanol: Experimental results and heat transfer correlation assessments EXPERIMENTAL THERMAL AND FLUID SCIENCE 0894-1777 1879-2286 JAN 2012 36 93 106 10.1016/j.expthermflusci.2011.09.001 WOS:000298124000011 J Benselama, AM; Harmand, S; Sefiane, K Benselama, Adel M.; Harmand, Souad; Sefiane, Khellil Equilibrium profile of extended isothermal meniscus with gravity inclination effect COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 18th International Symposium on Surfactants in Solution (SIS) NOV 14-19, 2010 Melbourne, AUSTRALIA 0927-7757 1873-4359 NOV 5 2011 391 1-3 SI 158 169 10.1016/j.colsurfa.2011.03.068 WOS:000299068100023 J Benselama, AM; Harmand, S; Sefiane, K Benselama, Adel M.; Harmand, Souad; Sefiane, Khellil A perturbation method for solving the micro-region heat transfer problem PHYSICS OF FLUIDS 1070-6631 OCT 2011 23 10 102103 10.1063/1.3643265 WOS:000296528000013 J Harmand, S; Sefiane, K; Lancial, N; Benselama, AM Harmand, S.; Sefiane, K.; Lancial, N.; Benselama, A. M. Experimental and theoretical investigation of the evaporation and stability of a meniscus in a flat micro-channel INTERNATIONAL JOURNAL OF THERMAL SCIENCES 1290-0729 OCT 2011 50 10 1845 1852 10.1016/j.ijthermalsci.2011.02.009 WOS:000293801500005 S Harmand, S; Sefiane, K; Bennacer, R; Lancial, N Ochsner, A; Murch, GE; Delgado, JMP Harmand, Souad; Sefiane, Khellil; Bennacer, Rachid; Lancial, Nicolas Experimental Investigation of the Evaporation and Stability of a Meniscus in a Flat Microchannel DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2 Defect and Diffusion Forum 6th International Conference on Diffusion in Solids and Liquids JUL 05-07, 2010 Paris, FRANCE 1012-0386 2011 312-315 1,2 1178 + 10.4028/www.scientific.net/DDF.312-315.1178 WOS:000297606300199
Start Year 2012