UK Consortium on Turbulent Reacting Flows (UKCTRF)

Lead Research Organisation: Lancaster University
Department Name: Engineering


The proposed UK Consortium on Turbulent Reacting Flows will perform high-fidelity computational simulations (i.e. Reynolds Averaged Navier-Stokes simulations (RANS), Large Eddy Simulation (LES) and Direct Numerical Simulations (DNS)) by utilising national High Performance Computing (HPC) resources to address the challenges related to energy through the fundamental physical understanding and modelling of turbulent reacting flows. Engineering applications range from the formulation of reliable fire-safety measures to the design of energy-efficient and environmentally-friendly internal combustion engines and gas turbines. The consortium will serve as a platform to collaborate and share HPC expertise within the research community and to help UK computational reacting flow research to remain internationally competitive. The proposed research of the consortium is divided into a number of broad work packages, which will be continued throughout the duration of the consortium and which will be reinforced by other Research Council and industrial grants secured by the consortium members. The consortium will also support both externally funded (e.g. EU and industrial) and internal (e.g. university PhD) projects, which do not have dedicated HPC support of their own.
The consortium will not only have huge intellectual impact in terms of fundamental physical understanding and modelling of turbulent reacting flows, but will also have considerable long-term societal impact in terms of energy efficiency and environmental friendliness. Moreover, the cutting edge computational tools developed by the consortium will aid UK based manufacturers (e.g. Rolls Royce and Siemens) to design safe, reliable, energy-efficient and environmentally-friendly combustion devices to exploit the expanding world-wide energy market and boost the UK economy. Last but not least, the proposed collaborative research lays great importance on the development of highly-skilled man-power in the form of Research Associates (RAs) and PhD students of the consortium members, who in turn are expected to contribute positively to the UK economy and UK reacting flow research for many years to come.

Related Projects

Project Reference Relationship Related To Start End Award Value
EP/K025082/1 08/01/2014 28/02/2017 £13,562
EP/K025082/2 Transfer EP/K025082/1 01/06/2017 31/03/2019 £4,973
Description The UKCTRF consortium was launched in January 2014 and it will run until January 2019. Thus, it is still early days for this consortium to deliver substantial key findings and research outcomes. The vision of UKCTRF is closely aligned with the 'Energy' research theme of EPSRC under the headings of Energy Efficiency and Conventional Generation. The major beneficiaries of this work are the UK based industries (e.g. Rolls Royce, Shell and Siemens etc.) which are engaged in developing new concepts for designing low-pollution and high efficiency IC engines and gas turbines. Moreover, fire related research in the consortium will minimise the effects of atmospheric chemical pollution, accidental releases, fires and explosions, which in turn will lead to the development of improved fire-safety and reliable fire-resistant structures. Given the long term nature of the design-cycle of IC engines, gas turbines, and fire-resistant structures, as well as the time required to build up enough confidence in the community, it is likely that the impact of this project, in terms of new product and wealth creation in the UK, will be felt in a time-scale of 10-20 years. The technological advancements of this consortium will also help in designing energy-efficient and environment-friendly combustors especially for the UK based industries (e.g. Rolls Royce, Siemens, Shell etc.), which will also bring a long-term benefit (in a time scale of 10-20 years) for society. The data will be shared to other UK research groups upon request, and will play a significant role in devising and calibrating new models to carry out high-fidelity LES and RANS simulations. Finally, the CFD software community, who use state-of-the-art combustion RANS/LES models in their codes to yield high-fidelity predictions, will also be interested in this work and ultimately this benefit will be realised in 5 -10 years' time-scale. This consortium lays substantial emphasis on developing a highly skilled UK-based workforce in the form of postdoctoral researchers and PhD students who will eventually carry the expertise gained in the course of the project in their future roles. This benefit will be felt immediately as many young researchers (PhD students and RA) are already getting valuable experience of using High Performance Computing to address challenging problems of turbulent reacting flows which, in turn, is directly linked to the issues of energy efficiency, environment friendliness and improved fire-safety. Addressing these issues will therefore have significant socio-economic impact.
First Year Of Impact 2014
Sector Aerospace, Defence and Marine,Chemicals,Energy,Environment,Transport
Impact Types Societal,Economic

Description HPC4E (High Performance Computing for Energy)
Amount € 215,110 (EUR)
Funding ID 689772 
Organisation European Commission 
Sector Public
Country European Union (EU)
Start 12/2015 
End 11/2017