EPSRC Centre for Doctoral Training in Sustainable Chemical Technologies

Lead Research Organisation: University of Bath
Department Name: Chemistry

Abstract

Sustainability is defined as "the ability to meet the needs of the present without compromising the ability of future generations to meet their own needs". Achieving sustainable development is the key global challenge of the 21st Century. It can only be met with the adoption of a range of new sustainable technologies. Sustainable chemical technologies are those involving chemistry as the central science. They span a wide range of areas, many of which make major impacts on society. Key sustainable chemical technologies include: use of renewable resources and biotechnology (e.g., making fuels, chemicals and products from biomass rather than petrochemicals); clean energy conversion and storage (e.g., solar energy, the hydrogen economy and advanced battery technologies); sustainable use of water (e.g., membrane technologies for water purification and upcycling of nutrients in waste water); developing sustainable processes and manufacturing (e.g., making production of chemicals, pharmaceuticals and plastics more energy-efficient and less wasteful through developing sustainable supply chains as well as through technological advances); and developing advanced healthcare technologies (e.g., developing new drugs, medical treatments and devices).

To address these needs, we propose a Centre for Doctoral Training (CDT) in Sustainable Chemical Technologies. The £5.08m requested from the EPSRC will be supplemented by £2.0m from the University and a £4.13m industrial contribution. The CDT will place fundamental concepts of sustainability at the core of a broad spectrum of research and training at the interfaces of chemistry, chemical engineering, biotechnology and manufacturing. This will respond to a national and global need for highly skilled and talented scientists and engineers in the area as well as training tomorrow's leaders as advocates for sustainable innovation.

All students will receive foundation training to supplement their undergraduate knowledge, in addition training in Sustainable Chemical Technologies. Broader training and practice in public engagement and creativity will encourage responsible innovation and attention to ethical, societal, and business aspects of research. They will all conduct high quality and challenging research directed by supervisory teams comprising joint supervisors from at least two of the disciplines of chemistry, chemical engineering, biotechnology and management as well as an industrial and/or international advisor. The broad research themes encompass the areas of: Renewable Resources and Biotechnology, Energy and Water, Processes and Manufacturing and Healthcare Technologies. Participation from key industry partners will address stakeholder needs, and partner institutions in the USA, Germany, Australia, and South Korea will provide world-leading international input, along with exciting opportunities for student placements and internships.

The CDT will utilize dedicated physical and virtual space for the students as well as a supervisory base of more than fifty academics. Building on the success of the current Doctoral Training Centre and evolving to keep pace with the growing importance of biotechnology and manufacturing to UK industry, the centre will provide a dynamic and truly multidisciplinary environment for innovative PhD research and training.

Planned Impact

The Centre for Doctoral Training (CDT) in Sustainable Chemical Technologies (SCT) at the University of Bath will place fundamental concepts of sustainability at the core of a broad spectrum of research and training at the interface of chemical science and engineering. It will train over 60 PhD students in 5 cohorts within four themes (Energy and Water, Renewable Resources and Biotechnology, Processes and Manufacturing and Healthcare Technologies) and its activities and graduates will have potential economic, environmental and social impact across a wide range of beneficiaries from academia, public sector and government, to industry, schools and the general public.

The primary impact of the CDT will be in providing a pool of highly skilled and talented graduates as tomorrow's leaders in industry, academia, and policy-making, who are committed to all aspects of sustainability. The economic need for such graduates is well-established and CDT graduates will enhance the economic competitiveness of the UK chemistry-using sector, which accounts for 6m jobs (RSC 2010), contributing £25b to the UK economy in 2010 (RSC 2013). The Industrial Biotechnology (IB) Innovation and Growth Team (2009) estimated the value of the IB market in 2025 between £4b and £12b, and CIKTN (BIS) found that "chemistry, chemical engineering and biology taken together underpin some £800b of activity in the UK economy".

UK industry will also gain through collaborative research and training proposed in the Centre. At this stage, the CDT has 24 partners including companies from across the chemistry- and biotechnology-using sectors. As well as direct involvement in collaborative CDT projects, the Centre will provide an excellent mechanism to engage with industrial and manufacturing partners via the industrial forum and the Summer Showcase, providing many opportunities to address economic, environmental and societal challenges, thereby achieving significant economic and environmental impact.

Maf the issues and topics covered by the centre (e.g., sustainable energy, renewable feedstocks, water, infection control) are of broad societal interest, providing excellent opportunities for engagement of a wide range of publics in broader technical and scientific aspects of sustainability. Social impact will be achieved through participation of Centre students and staff in science cafés, science fairs (Cheltenham Science Festival, British Science Festival, Royal Society Summer Science Exhibition) and other events (e.g., Famelab, I'm a Scientist Get Me Out of Here). Engagement with schools and schoolteachers will help stimulate the next generation of scientists and engineers through enthusing young minds in relevant topics such as biofuels, solar conversion, climate change and degradable plastics.

The activities of the CDT have potential to have impact on policy and to shape the future landscape of sustainable chemical technologies and manufacturing. The CDT will work with Bath's new Institute for Policy Research, through seminars, joint publication of policy briefs to shape and inform policy relevant to SCT. Internship opportunities with stakeholder partners and, for example, the Parliamentary Office of Science and Technology will provide further impact in this context.

Publications

10 25 50