Chalcogenide Photonic Technologies

Lead Research Organisation: University of Southampton
Department Name: Optoelectronics Research Ctr (closed)

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Publications

10 25 50
 
Description Incorporation of highly functional materials into 3D structures fabricated on the nanoscale.
Exploitation Route These finding are part of ongoing research. One aspect of this work has led to interest by an Industrial partner for ill-filing of void in a computer hardware device.
Sectors Aerospace, Defence and Marine,Chemicals,Digital/Communication/Information Technologies (including Software),Electronics

 
Description Results from this project have demonstrated the use of 2D materials at biosensors for the detection of DNA. This has lead to a new research area for the participants in this award.
Sector Electronics,Healthcare,Pharmaceuticals and Medical Biotechnology
 
Description Chalcogenide Photonic Technologies
Amount £594,605 (GBP)
Funding ID EP/M008487/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 05/2015 
End 04/2018
 
Description Nanomaterials for Smart Data Storage
Amount £211,227 (GBP)
Funding ID EP/N510063/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 01/2016 
End 12/2017
 
Title New Processes 
Description Ellipsometry of 2D materials Improved annealing processes for 2D materials Processes for lower temperature deposition of 2D materials 
Type Of Material Improvements to research infrastructure 
Year Produced 2017 
Provided To Others? Yes  
Impact The Nanomaterials for Data Storage project has successfully demonstrated new materials with new capabilities to improve read write transducer reliability and performance in next generation hard drive products. High thermal conductivity materials have been processed at Seagate's wafer fabrication facility with follow on electrical testing to verify that the nitride based materials have enabled reduced thermal effects in the transducer, translating into a 25% gain in the ability to set the distance between the head and the disk. This will enable reduced time to product launch for the Heat Assisted Magnetic Recording (HAMR) hard drive technology due to reach the market in early 2019. Advanced material synthesis and test capability at the partner organisations, Ilika and University of Southampton was used to facilitate material optimisation and exploration with many alternative options. 
 
Description Smart Materials for Data Storage 
Organisation Ilika
Department Ilika Technologies Ltd.
Country United Kingdom 
Sector Private 
PI Contribution HAMR is a technology designed to enable the next big increase in the amount of data that can be stored on a hard drive. It uses a new kind of media magnetic technology on each disk that allows data bits, or grains, to become smaller and more densely packed than ever, while remaining magnetically stable. A small laser diode attached to each recording head heats a tiny spot on the disk, which enables the recording head to flip the magnetic polarity of each very stable bit, enabling data to be written. Our research team provided expertise in our knowledge of advanced materials to the industrial partner Seagate to help them indentify materials more suitable in the hard drives they were developing.
Collaborator Contribution The Nanomaterials for Data Storage project has successfully demonstrated new materials with new capabilities to improve read write transducer reliability and performance in next generation hard drive products. High thermal conductivity materials have been processed at Seagate's wafer fabrication facility with follow on electrical testing to verify that the nitride based materials have enabled reduced thermal effects in the transducer, translating into a 25% gain in the ability to set the distance between the head and the disk. This will enable reduced time to product launch for the Heat Assisted Magnetic Recording (HAMR) hard drive technology due to reach the market in early 2019. Advanced material synthesis and test capability at the partner organisations, Ilika and University of Southampton was used to facilitate material optimisation and exploration with many alternative options. The Nanomaterials for Data Storage has resulted in strong working relationship between Seagate, llika and the University of Southampton. As a result of this another Innovate UK funded project, Photonic Material Process for Data Storage, is underway. The aim of this project is to put in place a mechanism for continued business interaction between Seagate and Ilika. Also, the University of Southampton has been able to quickly demonstrate material properties and measurements in several areas that are of interest to Seagate. It is hoped that one of these areas can become the focus on a future Innovate UK funded project. The partners are actively working on this at the moment.
Impact Ellipsometry of 2D materials Improved annealing processes for 2D materials Processes for lower temperature deposition of 2D materials Invited to Participate Knowledge Transfer Network, UK led workshop: Contact: Monika Dunkel monika.dunkel@ktn-uk.org Participated in Flexible and Printed Electronics, Displays & Photonics demonstrator workshop, 21 November 2017, Cambridge
Start Year 2016
 
Description Materials Research Exchange, 12 March 2018, London 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact The 2018 Materials Research Exchange and Investor Showcase, organised by the Knowledge Transfer Network and Innovate UK and supported by EPSRC and Dstl provides an excellent platform to help develop commercial success of UK-generated materials research and innovation.

Taking place on 12 and 13 March, 2018 at the Business Design Centre, London it will provide an ideal opportunity to absorb current trends and take a glimpse of future innovations. The UK is an acknowledged global hub of excellence in materials research and know-how. This event will demonstrate the groundbreaking new materials and processes to industry to accelerate the process of taking these through to commercialisation.

From metals, powders and textiles to graphene and polymers - innovations in advanced materials research have numerous applications across a wide range of sectors. MRE2018 will be the largest and finest materials innovation event of the year... designed by those working in materials for the materials sector to engage with key application sectors in the UK and beyond.
Year(s) Of Engagement Activity 2018
URL http://www.rsc.org/events/detail/30124/materials-research-exchange-and-investor-showcase-2018