Donor Design for Maximum Mobility TCOs

Lead Research Organisation: University of Liverpool
Department Name: Physics

Abstract

Transparent conducting oxides (TCO) are ubiquitous in modern society, being components in a vast array of consumer electronics (e.g. smart phones, tablets, lap tops, flat panel displays etc.) and finding use in applications such as solar cells, smart windows, low emissivity windows etc. To date, the TCO with the largest share of the market is tin doped indium oxide (known as ITO), which displays excellent transparency and conductivity. The fact that indium is not very abundant in the earth's crust (and is often found in unstable geopolitical areas), allied to the inexorable increase in the demand for consumer electronics globally, has caused large fluctuations in the price of indium over the past decade. This has understandably caused concern in the industrial sector. Other TCO materials exist, such as fluorine doped tin dioxide (FTO), antimony doped tin dioxide (ATO), and Aluminium doped zinc oxide (AZO), however, they have not reached the performance levels of ITO. In each case, the limitations are linked to the dopant that is used
Recently we proposed an initial understanding of how some specific novel dopants can produce enhanced performance TCOs, termed the "remote impurity scattering mechanism", and we will now screen novel dopants in the earth abundant host oxides zinc oxide, tin dioxide and barium stannate, in order to find the ideal TCO/dopant combination.

This will be done in 3 ways:
1) Computational screening of novel dopants
2) Deposition of doped thin films using low cost, scaleable chemical vapour deposition
3) Physical characterisation of the doped films

The synergistic approach between computational chemistry, semiconductor physics and low cost scaleable deposition will result in new high performance, low cost, industrially viable TCOs. They will be transferred from our labs to industrial scale processes on our project partner's float glass line.

Publications

10 25 50
 
Description We found what limits the conductivity of a transparent conducting oxide (TCO) material, fluorine-doped tin dioxide. TCOs are used for flat panel displays, low emissivity window coatings and thin film solar cells. We found a way to make transparent conducting oxides more conducting and more transparent, particularly in the infrared part of the spectrum. This will enable better solar cells to be made. It also has applications in displays, where the same performance will be possible using less indium, a scarce and expensive element.
Exploitation Route The results should enable more conducting films to made in the future with different dopants from fluorine.

Transparent conducting oxide films with improved infrared transparency will now be possible using our novel dopants and insights.
Sectors Aerospace, Defence and Marine,Construction,Electronics,Energy

URL https://news.liverpool.ac.uk/2017/11/27/discovery-points-the-way-to-better-and-cheaper-transparent-conductors/;https://news.liverpool.ac.uk/2019/09/17/new-research-gives-breakthrough-for-transparent-conductors/