Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides

Lead Research Organisation: University of Southampton
Department Name: Optoelectronics Research Centre (ORC)

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Publications

10 25 50
 
Description The speciality glasses we have developed in the past for optical applications also have electronic properties, vastly expanding the range of applications they can be used. In particular the finding that chalcogenides can be formed which provide n-type behaviour is a signficant step forward for their application.
Exploitation Route New electronic devices, light sources and power generation. Much of this work has direct links to other awards we currently have active hence these finding contribute to our overall research programme.
Sectors Aerospace, Defence and Marine,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Manufacturing, including Industrial Biotechology

 
Description There has been interest from industry, leading to an Innovate UK award for the development of novel methods of depositing thin films from our materials.
First Year Of Impact 2016
Sector Digital/Communication/Information Technologies (including Software),Electronics,Energy,Manufacturing, including Industrial Biotechology
 
Description 2D International Collaboration 
Organisation Federal University of Pernambuco
Country Brazil 
Sector Academic/University 
PI Contribution During 2020, our research has continued to focus on optimising the electrical properties of uniform, wafer scale, atomically thin 2D films for use in next generation transistor devices and large areas transition metal di-chalcogenide monolayers for a variety of emerging electronic and photonics applications.
Collaborator Contribution In collaborative work with Brazil, China and the University of Nottingham here in the UK, we have found that ionizing radiation (gamma ray) interacts strongly with two-dimensional WS2, which induces effective p-doping in the samples. As the radiation dose increases, the p-doping concentration increases substantially. We demonstrate ?-ray interaction with a WS2 monolayer verifying the generation of secondary ? photons (in the silicon substrate), electron/hole pairs, fast electrons, and creation of S and W vacancies in the monolayer.
Impact These results, published in May in the journal Nanoscale Horizons, have shown that a detector based on monolayer WS2 is an appealing candidate for sensing high-energy photons at small radiation doses.
Start Year 2019
 
Description 2D International Collaboration 
Organisation Shandong Normal University
Country China 
Sector Academic/University 
PI Contribution During 2020, our research has continued to focus on optimising the electrical properties of uniform, wafer scale, atomically thin 2D films for use in next generation transistor devices and large areas transition metal di-chalcogenide monolayers for a variety of emerging electronic and photonics applications.
Collaborator Contribution In collaborative work with Brazil, China and the University of Nottingham here in the UK, we have found that ionizing radiation (gamma ray) interacts strongly with two-dimensional WS2, which induces effective p-doping in the samples. As the radiation dose increases, the p-doping concentration increases substantially. We demonstrate ?-ray interaction with a WS2 monolayer verifying the generation of secondary ? photons (in the silicon substrate), electron/hole pairs, fast electrons, and creation of S and W vacancies in the monolayer.
Impact These results, published in May in the journal Nanoscale Horizons, have shown that a detector based on monolayer WS2 is an appealing candidate for sensing high-energy photons at small radiation doses.
Start Year 2019
 
Description 2D International Collaboration 
Organisation University of Nottingham
Department School of Physics and Astronomy
Country United Kingdom 
Sector Academic/University 
PI Contribution During 2020, our research has continued to focus on optimising the electrical properties of uniform, wafer scale, atomically thin 2D films for use in next generation transistor devices and large areas transition metal di-chalcogenide monolayers for a variety of emerging electronic and photonics applications.
Collaborator Contribution In collaborative work with Brazil, China and the University of Nottingham here in the UK, we have found that ionizing radiation (gamma ray) interacts strongly with two-dimensional WS2, which induces effective p-doping in the samples. As the radiation dose increases, the p-doping concentration increases substantially. We demonstrate ?-ray interaction with a WS2 monolayer verifying the generation of secondary ? photons (in the silicon substrate), electron/hole pairs, fast electrons, and creation of S and W vacancies in the monolayer.
Impact These results, published in May in the journal Nanoscale Horizons, have shown that a detector based on monolayer WS2 is an appealing candidate for sensing high-energy photons at small radiation doses.
Start Year 2019
 
Description Smart Materials for Data Storage 
Organisation Ilika
Department Ilika Technologies Ltd.
Country United Kingdom 
Sector Private 
PI Contribution HAMR is a technology designed to enable the next big increase in the amount of data that can be stored on a hard drive. It uses a new kind of media magnetic technology on each disk that allows data bits, or grains, to become smaller and more densely packed than ever, while remaining magnetically stable. A small laser diode attached to each recording head heats a tiny spot on the disk, which enables the recording head to flip the magnetic polarity of each very stable bit, enabling data to be written. Our research team provided expertise in our knowledge of advanced materials to the industrial partner Seagate to help them indentify materials more suitable in the hard drives they were developing.
Collaborator Contribution The Nanomaterials for Data Storage project has successfully demonstrated new materials with new capabilities to improve read write transducer reliability and performance in next generation hard drive products. High thermal conductivity materials have been processed at Seagate's wafer fabrication facility with follow on electrical testing to verify that the nitride based materials have enabled reduced thermal effects in the transducer, translating into a 25% gain in the ability to set the distance between the head and the disk. This will enable reduced time to product launch for the Heat Assisted Magnetic Recording (HAMR) hard drive technology due to reach the market in early 2019. Advanced material synthesis and test capability at the partner organisations, Ilika and University of Southampton was used to facilitate material optimisation and exploration with many alternative options. The Nanomaterials for Data Storage has resulted in strong working relationship between Seagate, llika and the University of Southampton. As a result of this another Innovate UK funded project, Photonic Material Process for Data Storage, is underway. The aim of this project is to put in place a mechanism for continued business interaction between Seagate and Ilika. Also, the University of Southampton has been able to quickly demonstrate material properties and measurements in several areas that are of interest to Seagate. It is hoped that one of these areas can become the focus on a future Innovate UK funded project. The partners are actively working on this at the moment.
Impact Ellipsometry of 2D materials Improved annealing processes for 2D materials Processes for lower temperature deposition of 2D materials Invited to Participate Knowledge Transfer Network, UK led workshop: Contact: Monika Dunkel monika.dunkel@ktn-uk.org Participated in Flexible and Printed Electronics, Displays & Photonics demonstrator workshop, 21 November 2017, Cambridge
Start Year 2016
 
Description An amorphous ion implanted chalcogenide optoelectronic information processing platform 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Type Of Presentation paper presentation
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact The doping of crystalline semiconductors, in particular Si, has proven to be the key technological step that underpins the majority of today's electronic technologies. Of all the effects observed, the ability to control the electronic properties of these materials, providing n-type, p-type conducting and insulating regions via ion-implantation, has revolutionised manufacturing and enabled Moore's law to continue to be held. Ion-implantation continues to provide new opportunities for technological advances in microelectronics, for example, such methods can also be used to stabilize or activate specific interactions within the materials within localized regions.



We report first on ion implantation of a broad range of elements into chalcogenide thin films spanning sulphides, selenides and tellurides. The properties of these films are investigated pre and post implantation. Second, targeting the most promising dopants and chalcogenide compounds, we describe design, fabrication and characterisation of a series of ion implanted amorphous PN junctions in the Ge:Se family of glasses, using both metallic (Al) and gaseous implanted ions (O). The junctions produced show good rectification while at higher electric field exhibiting memory switching behaviour. This suggests the possiblitie of unique devices exhibit, rectification along with a controlled asymmetric polarity dependant behaviour, which shows great promise in realising next generation synaptic devices.



We believe that through the ion implantation process, in selected chalcogenide materials, a low cost production line method of producing integrated diode/memory cells with next generation cognitive information processing capability can be realised for use in future cross bar array architectures.
.

Results published in Nature Communications
Year(s) Of Engagement Activity 2013
 
Description Materials Research Exchange, 12 March 2018, London 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Industry/Business
Results and Impact The 2018 Materials Research Exchange and Investor Showcase, organised by the Knowledge Transfer Network and Innovate UK and supported by EPSRC and Dstl provides an excellent platform to help develop commercial success of UK-generated materials research and innovation.

Taking place on 12 and 13 March, 2018 at the Business Design Centre, London it will provide an ideal opportunity to absorb current trends and take a glimpse of future innovations. The UK is an acknowledged global hub of excellence in materials research and know-how. This event will demonstrate the groundbreaking new materials and processes to industry to accelerate the process of taking these through to commercialisation.

From metals, powders and textiles to graphene and polymers - innovations in advanced materials research have numerous applications across a wide range of sectors. MRE2018 will be the largest and finest materials innovation event of the year... designed by those working in materials for the materials sector to engage with key application sectors in the UK and beyond.
Year(s) Of Engagement Activity 2018
URL http://www.rsc.org/events/detail/30124/materials-research-exchange-and-investor-showcase-2018