SmartHeart: Next-generation cardiovascular healthcare via integrated image acquisition, reconstruction, analysis and learning

Lead Research Organisation: Imperial College London
Department Name: Computing

Abstract

The vision for our research programme is to pave the way for a fundamentally different approach in which cardiovascular diseases (CVD) are diagnosed, monitored and treated: We propose to develop a diagnosis-driven "smart Magnetic Resonance (MR) scanner" that it is no longer a mere imaging device but instead becomes a highly sophisticated diagnostic tool. The output of a patient scan with the proposed smart MR scanner will not be just an image, but instead a comprehensive diagnostic assessment and interpretation of the patient's cardiovascular health/disease, enabling optimal treatment decisions for best patient outcome.

The current approach to cardiovascular MR imaging (cMRI) is essentially serial: image acquisition is followed by image analysis and clinical interpretation. In addition, cardiac/respiratory motion is currently resulting in long scanning times for cMRI, with only a small fraction of the data (10-20%) being used for image reconstruction. This leads to breath-holds that are difficult to tolerate by sick patients. Furthermore, the characterization of clinically relevant tissue parameters requires the acquisition of multiple images which is inefficient. The absolute quantification of tissue parameters also remains a major technical challenge, leading to difficulties in interpreting tissue contrast parameters across scanners, clinical centres and patient populations. Finally, the objective interpretation of comprehensive, multi-parametric cMRI in the context of other complex non-imaging data is highly challenging for clinicians.

We propose a transformative approach in which acquisition, analysis and interpretation are tightly coupled, with feedback between the different stages in order to optimize the overall objective: Extracting clinically useful information. Developing such an integrated approach to cardiac imaging will enable rapid, continuous and comprehensive imaging that is both simpler and more efficient than current practice, eliminating "dead time" between separate specialized acquisitions and allowing extraction of multiple dynamic as well as tissue contrast parameters simultaneously.

Planned Impact

Cardiovascular diseases (CVD) cause more than a quarter of all deaths in the UK (155,000 deaths pa). The cost to the UK of premature death, lost productivity, hospital treatment and prescriptions relating to CVD is estimated at £19B each year, with healthcare costs alone totalling an estimated £8B (source: BHF). The current gold standard for diagnosis is based on cardiac catheterisation to obtain coronary angiograms in order to measure parameters such as coronary stenosis and fractional flow reserve (FFR). This highly invasive and costly procedure is increasingly being replaced by imaging modalities such as cardiac Magnetic Resonance Imaging (cMRI). This programme grant will develop smart and integrated image acquisition, analysis and interpretation approaches for cMRI that enable far more accurate, reproducible and objective quantification of CVD. This has the potential to boost clinical decision making in terms of diagnostic and prognostic accuracy. The main beneficiaries are listed below:

The primary beneficiaries of the proposed research are patients with CVD as well as their families. They will benefit from improved diagnosis and prognosis of CVD which is crucial deciding on treatment strategies and preventative strategies for reducing further damage to the heart. This not only has the potential to improve the rehabilitation of patients with CVD but also can improve their quality of life following CVD. Another group of beneficiaries are clinicians (especially cardiologists and radiologists) involved in the care of patients with CVD as well as charities promoting cardiovascular health. They will benefit from better quantitative and objective information for making clinical decisions regarding patient management and as well as from increase confidence via the decision support tools developed in this project. Furthermore, the stratification tools developed here are a prerequisite for developing and evaluating novel therapeutic treatments and are thus of high interest for the pharma and medical device industry.

The healthcare industry also benefits from the research in this project. The medical imaging sector is the biggest component of this industry and will significantly benefit from further developments in medical imaging technologies. This is also illustrated by the fact that two of the world's largest medical imaging companies (Siemens and Philips) are partners in this project. The UK industry is playing a leading role in medical imaging and has a number of rapidly growing SMEs in this area, including Perspectum Diagnostics (project partner), IXICO (co-founded by Rueckert) and Intelligent Ultrasound (co-founded by Noble). In addition to the exploitation of technology and intellectual property, industry will also benefit from a pool of highly-skilled and trained researchers in this area.

Finally, society as a whole will benefit via improved diagnosis of patients as well as better prognosis of outcome and recovery, leading to improved healthcare economics. This will also benefit healthcare providers such as the NHS and policy makers.

Publications

10 25 50

publication icon
Asher C (2021) The Role of AI in Characterizing the DCM Phenotype. in Frontiers in cardiovascular medicine

 
Title MOESM2 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 2: Movie demonstrating short-axis image segmentation (mid-ventricular slice). (MP4 63 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM2_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM2 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 2: Movie demonstrating short-axis image segmentation (mid-ventricular slice). (MP4 63 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM2_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM3 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 3: Movie demonstrating short-axis image segmentation (basal slice). (MP4 74 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM3_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM3 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 3: Movie demonstrating short-axis image segmentation (basal slice). (MP4 74 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM3_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM4 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 4: Movie demonstrating short-axis image segmentation (apical slice). (MP4 48 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM4_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM4 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 4: Movie demonstrating short-axis image segmentation (apical slice). (MP4 48 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM4_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM5 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 5: Movie demonstrating long-axis image segmentation (2 chamber view). (MP4 116 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM5_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM5 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 5: Movie demonstrating long-axis image segmentation (2 chamber view). (MP4 116 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM5_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM6 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 6: Movie demonstrating long-axis image segmentation (4 chamber view). (MP4 133 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM6_of_Automated_cardiovascular_magnetic_resonance_i...
 
Title MOESM6 of Automated cardiovascular magnetic resonance image analysis with fully convolutional networks 
Description Additional file 6: Movie demonstrating long-axis image segmentation (4 chamber view). (MP4 133 kb) 
Type Of Art Film/Video/Animation 
Year Produced 2018 
URL https://springernature.figshare.com/articles/MOESM6_of_Automated_cardiovascular_magnetic_resonance_i...
 
Description As part of this grant we have developed (a) novel MR image sequences for cardiac imaging, (b) novel MR image reconstruction techniques and (c) novel MR image analysis approaches. In addition, we are in the process of assembling a large database of clinical cardiac MRI.
Exploitation Route The algorithms and techniques developed so far may be adopted by medical imaging companies and integrated into their products.
Sectors Healthcare

URL http://wp.doc.ic.ac.uk/smartheart/
 
Description Biomedical Research Centre
Amount £89,000,000 (GBP)
Organisation National Institute for Health Research 
Sector Public
Country United Kingdom
Start 12/2022 
End 04/2027
 
Description EPSRC Centre for Doctoral Training in Smart Medical Imaging at King's College London and Imperial College London
Amount £6,022,394 (GBP)
Funding ID EP/S022104/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 08/2019 
End 03/2028
 
Description Efficient and Robust Assessment of Cardiovascular Disease Using Machine Learning and Ultrasound Imaging
Amount £397,985 (GBP)
Funding ID EP/R005982/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2018 
End 01/2021
 
Description Healthcare Impact Partnership
Amount £932,050 (GBP)
Funding ID EP/P023509/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 09/2017 
End 09/2020
 
Description London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare
Amount £9,985,272 (GBP)
Funding ID 104691 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 02/2019 
End 01/2022
 
Description MRC Industrial CASE studentship
Amount £104,565 (GBP)
Funding ID MR/N018028/1 
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 03/2017 
End 03/2021
 
Description Project grant
Amount £707,983 (GBP)
Funding ID EP/R005516/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 02/2018 
End 01/2021
 
Description The BHF Pat Merriman Clinical Research Fellowship - Predicting hypertension mediated subclinical left ventricular hypertrophy using machine learning techniques (Dr Sayed (Hafiz) Naderi)
Amount £251,134 (GBP)
Funding ID FS/20/22/34640 
Organisation British Heart Foundation (BHF) 
Sector Charity/Non Profit
Country United Kingdom
Start 09/2020 
End 10/2023
 
Description Turing AI Fellowship: Ultra Sound Multi-Modal Video-based Human-Machine Collaboration
Amount £4,248,942 (GBP)
Funding ID EP/X040186/1 
Organisation United Kingdom Research and Innovation 
Sector Public
Country United Kingdom
Start 09/2023 
End 09/2028
 
Description euCanSHare
Amount € 6,039,980 (EUR)
Funding ID 825903 
Organisation European Commission H2020 
Sector Public
Country Belgium
Start 12/2018 
End 11/2022
 
Description Cardiac CT artificial intelligence collaboration with Washington DC 
Organisation Georgetown University
Country United States 
Sector Academic/University 
PI Contribution We developed atrial segmentation AI algorithms on datasets provided by our collaborators in Washington DC.
Collaborator Contribution Our collaborators provided very rich and unique cardiac CT datasets and clinical expertise.
Impact Publications - listed in the publications output. doi: 10.3389/fcvm.2022.822269 This is a multi-disciplinary collaboration (clinicians, AI experts)
Start Year 2021
 
Description Development of cardiac MRI radiomics as a novel imaging biomarker 
Organisation University of Barcelona
Country Spain 
Sector Academic/University 
PI Contribution Clinical and imaging expertise by Steffen Petersen group.
Collaborator Contribution Machine learning and radiomics expertise by University of Barcelona team.
Impact Multi-disciplinary teams: computer science, data science, cardiology, imaging, genetics. Outcomes: grant submissions, publications as listed elsewhere.
Start Year 2017
 
Description Heartflow collaboration 
Organisation HeartFlow
Country United States 
Sector Private 
PI Contribution HeartFlow offers a non-invasive method to detect and quantify blockages in arteries by using 3D scans of patients' hearts to simulate blood flow and aid diagnosis.We are assisting the company in developing new algorithms that 'learn' and improve as they analyse datasets to provide increasingly accurate models.
Collaborator Contribution Heartflow provides funding for research on CT image reconstruction and analysis.
Impact New collaboration, no results yet
Start Year 2018
 
Description NIHR Cardiovascular HTC 
Organisation National Institute for Health Research
Country United Kingdom 
Sector Public 
PI Contribution The NIHR Cardiovascular HTC was a collaborator on the original MedIAN bid. We share information on events between our networks and have run an event together.
Collaborator Contribution We share information on events between our networks and have run an event together.
Impact A joint event was held with follow-up including connecting with the UK Biobank.
Start Year 2014
 
Description NIHR Cardiovascular MIC 
Organisation National Institute for Health Research
Country United Kingdom 
Sector Public 
PI Contribution The NIHR Cardiovascular MIC replaced the HTC of the same name in January 2018 and we continue to work with them on sharing information and will run a joint meeting in 2018.
Collaborator Contribution See above.
Impact Sharing information and running joint events.
Start Year 2018
 
Description UK Biobank 
Organisation UK Biobank
Country United Kingdom 
Sector Charity/Non Profit 
PI Contribution The UK Biobank Imaging consortium is gathering a large amount of image data on study subjects. MedIAN participants have discussed with UK Biobank consortium partners challenges in automated image analysis of the cardiac image data.
Collaborator Contribution Knowledge exchange. Some partners have followed up with UK Biobank to consider how they can support analysis. One example is the SmartHeart Programme Grant.
Impact Individuals followed up from the workshop to consider how they might support the UK Biobank.
Start Year 2016
 
Company Name Xrnostics Limited 
Description  
Year Established 2023 
Impact To be reported.
 
Description AIUM 2021 Special Session Invited Speaker 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Invited speaker in Session with Title: Deep Learning Applications for New Ultrasound Techniques. Talk was pre-recorded with live questions.
This primary audience was medical physicists rather than medical image analysis experts.
Year(s) Of Engagement Activity 2021
 
Description Distinguished Keynote Speaker in Biomedical and Health Data Science in two joint conferences of IEEE EMBS BHI and BSN 2021 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Keynote talk entitled: Simplifying interpretation and acquisition of ultrasound scans, delivered virtually.
Abstract:
Short Abstract:
With the increased availability of low-cost and handheld ultrasound probes, there is interest in simplifying interpretation and acquisition of ultrasound scans
through deep-learning based analysis so that ultrasound can be used more widely in healthcare. However, this is not just "all about the algorithm", and successful innovation
requires inter-disciplinary thinking and collaborations.
In this talk I will overview progress in this area drawing on examples of my laboratory's experiences of working with partners on multi-modal ultrasound imaging, and building
assistive algorithms and devices for pregnancy health assessment in high-income and low-and-middle-income country settings. Emerging topics in this area will also be discussed.
Year(s) Of Engagement Activity 2021
 
Description International Conference on Image Computing and Computer Assisted Intervention (MICCAI) 2018. Granada, Spain - Program Chair Prof Julia Schnabel 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact This was the largest MICCAI conference to-date, with over 1500 participants from academic and industry.
Year(s) Of Engagement Activity 2018
URL http://miccai2018.org
 
Description Leaflet about the use of AI in cardiac imaging, in the context of SmartHeart 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact The SmartHeart team have produced a leaflet in the style of a graphic novel to reach out to young audiences, and the public generally, to explain how machine learning is used to aid cardiac imaging, in the context of the SmartHeart programme.
Year(s) Of Engagement Activity 2019,2020
URL https://wp.doc.ic.ac.uk/smartheart/smartheart-comic-released/
 
Description MIUA 2021 Conference - co-organiser 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact MIUA is a UK-based international conference for the communication of image processing and analysis research and its application to medical imaging and biomedicine. This was the 25th edition of the meeting which was held virtually. 40 papers were presented (27k downloads as of 09-03-2022). MIUA is the principal UK forum for communicating research progress within the community interested in image analysis applied to medicine and related biological science. The meeting is designed for the dissemination and discussion of research in medical image understanding and analysis, and aims to encourage the growth and raise the profile of this multi-disciplinary field by bringing together the various communities including among others:
Year(s) Of Engagement Activity 2021
URL https://miua2021.com/
 
Description MIUA2020 Conference - co-organiser 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact MIUA is a UK-based international conference for the communication of image processing and analysis research and its application to medical imaging and biomedicine. This was the 24th edition of the meeting which was held virtually.
MIUA is the principal UK forum for communicating research progress within the community interested in image analysis applied to medicine and related biological science. The meeting is designed for the dissemination and discussion of research in medical image understanding and analysis, and aims to encourage the growth and raise the profile of this multi-disciplinary field by bringing together the various communities including among others:
Year(s) Of Engagement Activity 2020
URL https://miua2020.com/
 
Description Medical Imaging Summer School (MISS 2018): Medical Imaging meets Deep Learning - Director Prof Julia Schnabel 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact The focus of this Medical Imaging Summer School (MISS) is to train a new generation of young scientists to bridge this gap, by providing insights into the various interfaces between medical imaging and deep learning, based on the shared broad categories of medical image computing, computer-aided image interpretation and disease classification. The course will contain a combination of in-depth tutorial-style lectures on fundamental state-of-the-art concepts, followed by accessible yet advanced research lectures using examples and applications. A broad overview of the field will be given, and guided reading groups will complement lectures. The course will be delivered by world renowned experts from both academia and industry, who are working closely at the interface of medical imaging/deep learning.

The school aims to provide a stimulating graduate training opportunity for young researchers and Ph.D. students. The participants will benefit from direct interaction with world leaders in medical image computing and deep learning(often working in both fields). Participants will also have the opportunity to present their own research, and to interact with their scientific peers, in a friendly and constructive setting.
Year(s) Of Engagement Activity 2018
URL http://iplab.dmi.unict.it/miss18/
 
Description National Academies roundtable on researcher access to data 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact The National Academies Data Reform Round Table was a by invitation meeting that discussed some of the current challenges that researchers face with getting access to data for research due to current data protection regulation. The Department for Digital, Culture, Media and Sport (DCMS) was consulting on
reforming the UK's data protection regime which formed part of a larger effort to implement the government's National Data Strategy, and specifically Mission 2 of that strategy: 'supporting a pro-growth and trusted data regime'. This issue affects researchers working in computer vision and medical image analysis and this was part of the discussion.

In terms of impact/outcome, the meeting output fed into a response that hopefully will have influence (how direct can not be measured/it is too early to determine but I selected this box in the next question for this reason).
Year(s) Of Engagement Activity 2021
 
Description National Academies' party conference event speaker 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Speaker on the (virtual) National Academies panel at the Liberal Democrat political party conference which focused on the theme of 'Becoming a "science superpower": will the UK be fit to tackle the next global crisis?'.

Briefing: The panel discussions will address how the UK should approach the future, building resilience to future crises and achieving 'superpower' status. The panel will include leading experts representing the National Academies, as well as representatives from the political parties and a journalist Chair.

Not aware of any direct impact (see next week) but these sessions are an important part of keeping an open and positive dialogue with MPs.
Year(s) Of Engagement Activity 2021
 
Description One day conference "AI in Cardiac Imaging" MedIAN sponsoring travel grants for early career researchers to attend 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact This conference targeted cardiologists and radiologists using or interested in becoming involved with AI approaches to MRI and PET/MRI, biomedical engineers (working in industry and pre- and post-doctoral students) interested in machine learning, and information and data scientists interested in how AI can be used in diagnosis of cardiovascular diseases. This brought together international leaders and researchers in machine learning, computational imaging, cardiac imaging and cardiology and featured high-profile speakers, posters and demonstrations from industry, academia, and clinical settings which all gave an overview of the clinical challenges, and disseminated the latest advances in cardiac imaging and AI, and how these can be combined to create a personalised diagnostic tool for cardiovascular diseases.
The intended purpose and outcomes/impact were summed up in the blog one of our travel grant recipients described after the event: "The day covered a wide range of different applications for AI within cardiac imaging - some being at a very early stage, e. g. going directly from MRI raw data to diagnosis, whereas others had been used in thousands of patients. Overall, I am happy that much of the earlier scepticism towards the use of machine learning within cardiac imaging seems to be gone (biased sampling I know...), which allows for those fruitful inter-disciplinary conversations that are necessary before a widespread clinical adoption can take place. "

Topics discussed included
AI for cardiac image acquisition and reconstruction
AI for automated cardiac imaging and QC
AI for cardiac image analysis and diagnostics
Extracting quantitative biomarkers using AI
Mining population and cohort studies using AI
Multi-modal (imaging, text, omics) AI approaches
AI-based decision support for CVD
Explainable and interpretable AI
Translation of AI-based solutions into the clinic
Year(s) Of Engagement Activity 2019
URL https://wp.doc.ic.ac.uk/smartheart/ai-in-cardiac-imaging-workshop
 
Description Royal Society/Government Chief Scientific Advisors meeting discussing PETs 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact Dinner discussion about PETs and potential future short terms uses of them across government departments. I presented an overview of the policy report that I chaired.
Year(s) Of Engagement Activity 2019