Towards Joint Power-Communication System Modelling and Optimisation for Smart Grid Application: Virtual Power Plant (TOPMOST)

Lead Research Organisation: Durham University
Department Name: Engineering


The UK's electricity networks are serving millions of people everyday but now are facing a challenging future, with ageing infrastructure but increasing penetration of Renewable Energy Sources (RESs). As such, the Office of Gas and Electricity Markets (Ofgem) has approved plans to spend £17bn for upgrading the UK's electricity networks till 2023 by using smarter technologies. As one of the most promising solutions, smart grid has attracted much attention, since it is capable of enabling bidirectional flows of energy and communications in the power grid infrastructure, that is crucial in improving the reliability, security, and efficiency of the electric systems and keeping the lights on at minimum cost to consumers.

The proposed research is concerned with one key smart grid application, i.e., Virtual Power Plant (VPP) which is designed to aggregate the capacity of many diverse distributed energy resources (DERs) and flexible demands to create a single operating profile as one "virtual power plant" that helps balance supply and demand in real time. To facilitate VPP, both optimisation algorithms and communication technologies play a significant role, but the full potential of VPP has been hampered by the lack of joint power-communication system models and the thorough analysis of the impact of communication system imperfections to optimisation algorithms.

If successful, this research will provide better understandings of these two systems operating with close interactions in VPP, develop more advanced methods in the design of VPP, and implement a hardware testbed of VPP with two-way real-time communication capability in Durham Smart Grid Laboratory. These could potentially lead to more efficient management of RESs and flexible demands, ultimately to improved operational efficiency of power grids for system operators and to reduced cost for consumers. Perhaps most importantly, however, is that this research will enable us to begin asking how we shall optimise theperformance of smart grid technologies, considering not only power systems but also realistic communication systems, thus encouraging multidisciplinary research and cross-fertilising both fields.

Planned Impact

1. The project will provide advancement in knowledge about the modelling and optimisation of joint power-communication systems for supporting smart grid applications, particularly targeting at virtual power plant (VPP) but can be readily generalised to other smart grid applications such as demand side management and smart metering programmes. This will have high possibility of attracting the attention of academic researchers from the wide fields of power & energy, control, and communications.

2. The proposed research in WP 2 and the experimental approach in WP 3 are not only relevant to the power system research, but also can be readily utilised for developing and testing next generation communication techniques. It provides an opportunity of developing technical skills in the fields of both power systems and communication systems, to both the PDRA and the PhD student involved in the project. These skills are also transferable to the research areas of smart homes, smart cities, and Internet of things, which also involve the development of modelling and optimisation techniques for joint systems that involve the communication system.

3. This project will establish a new experimental testbed to validate and evaluate both models and algorithms for managing distributed energy resources (DERs) and flexible demands in VPP. This will not only help individual consumers or DERs to obtain more opportunities of gaining revenues, but also provide system operators with the chance of improving operational efficiency due to the efficient use of DERs and the integration of flexible demands.

4. Relevant energy industry will also be interested in testing their products in the smart grid environments, e.g., the project partner Sunamp Ltd has shown big interests in exploiting the use of heat batteries in VPP and extending their products with remote monitoring functionalities by using the proposed communication techniques (see the letter of support from Sunamp Ltd). It is very likely that other ambitious collaborative projects will be developed between Durham and industrial partners that further enhance international excellence of UK on the subject of smart grid technologies.

5. The UK governmental bodies have shown increasing interest in the development of smart grid technologies and encouraging low carbon innovations through dealing with regulatory barriers. This project will provide an important chance of investigating related issues. Building on Dr Sun's experience of contributing two written evidences to the UK governmental bodies (including the UK Parliamentary Committee on Energy and Climate Change, and the UK Government Department of Energy & Climate Change), new written evidences will be generated from the outcomes of the proposed research.
Description Distributed generations can be effectively operated using virtual power plant techniques. The key benefits are: reduced carbon emission, improved cost-effectiveness and reduced transmission loss. By using intelligent controlled energy storage devices, the stability of power system can be guaranteed. This requires complex models and forecasting of energy demand, supply and storage. Further research activities are still needed to tackle the challenge of system complexity.
Exploitation Route Innovate UK KTP projects that enable knowledge transferred to industry.
Sectors Digital/Communication/Information Technologies (including Software),Energy

Description The research findings were used to develop test models in the Innovate UK-funded project. This Innovate UK project is a collaboration of Universities of Sussex/Durham with Sunamp ltd. and Moixa ltd. The testing results show better ways of managing energy storage units to meet end-user energy demands, in terms of voltage stability and cost etc.
First Year Of Impact 2019
Sector Energy
Impact Types Economic,Policy & public services

Description Electrical and thermal storage optimisation in a virtual power plant
Amount £286,991 (GBP)
Funding ID 132934 
Organisation Innovate UK 
Sector Public
Country United Kingdom
Start 11/2017 
End 09/2018