Self-Navigated Multi-Contrast And Quantitative Whole Heart 3D Magnetic Resonance Imaging

Lead Research Organisation: King's College London
Department Name: Imaging & Biomedical Engineering

Abstract

Cardiovascular disease (CVD) remains the leading single cause of death worldwide despite improvements in prevention and advances in diagnosis and treatment. The two major causes for CVD death are sudden coronary atherothrombosis due to plaque rupture and subsequent thrombus formation and heart failure following myocardial infarction (MI) due to adverse myocardial remodeling and subsequent infarct expansion. Detection of coronary atherosclerosis and prediction of adverse myocardial remodeling remain challenging with current imaging techniques. While x-ray coronary angiography is the gold standard for the detection of coronary stenosis it has limited value for the detection and characterization of coronary plaque. Multislice computed tomography (MSCT) is an excellent non-invasive alternative for the detection of coronary stenosis and has some ability to visualize and characterize coronary plaque but its diagnostic use is limited to patients without coronary calcification. Positron electron tomography (PET) has good diagnostic sensitivity for myocardial perfusion and viability assessment and recently also has been shown to have potential for coronary plaque visualization but suffers from low spatial resolution and radiation exposure and is not widely available. Echocardiography is the clinical gold standard for the assessment of left ventricular function and wall motion abnormalities. It is cheap and easy to use but is heavily operator dependent. Due to the above limitations there is a need for the development of an alternative and non-invasive imaging test that allows for comprehensive cardiac assessment without the above restrictions.

Magnetic resonance imaging (MRI) is considered the gold standard for the assessment of cardiac anatomy, left ventricular (LF) function (CINE-MRI), myocardial viability (LGE-MRI) and perfusion (MR-perfusion) due to its excellent soft tissue contrast, high spatial resolution and lack of ionizing radiation according to a Society for Magnetic Resonance (SCMR) expert consensus statement. Recent clinical research studies also have demonstrated its usefulness for quantitative myocardial tissue characterization (T1 and T2 relaxation time mapping) and its ability to differentiate between healthy and diseased tissue. However, a key limitation of the current MRI acquisition scheme is that all imaging sequences (e.g. CINE, LGE, T1 and T2 mapping, coronary MR angiography (MRA), etc.) are acquired sequentially, in different geometric orientations, at different breath-hold positions or using time inefficient navigator gating methods. This imposes several challenges: (1) radiographers need high expertise to perform the complex examination, (2) patients have to perform multiple (>30) breathholds which can be very challenging in sick patients, (3) the duration of the examination is long leading to high operational costs and (4) data fusion is difficult because of the different breathhold positions, scan geometries and non-isotropic spatial resolution. We hypothesize that image based respiratory self-navigation combined with image acceleration techniques will address the above challenges and allow improving the reliability and image quality of free-breathing (no breathholds) three-dimensional (3D) multi-contrast quantitative whole heart cardiac MRI. The proposed approach will enable non-invasive comprehensive cardiac examination with improved patient experience, higher diagnostic yield and improved cost effectiveness thereby improving the treatment and outcome of cardiovascular disease as outlined by the NHS white paper.

Planned Impact

Our goal is to maximise the impact of our work through dissemination of our ideas and results to the academic and clinical communities and potential industrial partners. The scientific methodology results from this research will be output as research publications in high-impact journals in the field of medical imaging and cardiology. Target journals will include Magnetic Resonance in Medicine, Circulation and Radiology. Dissemination will also take place through presentations at the major international academic conferences, especially the International Society for Magnetic Resonance in Medicine (ISMRM) and the Society for Cardiovascular Magnetic Resonance (SCMR).

A large amount of phantom and in-vivo cardiac MR data will be generated during the lifetime of this grant. We will protect any resulting intellectual property in consultation with KCL Enterprises. After the studies are published in scientific journals, and after they are patented if patenting is a viable option, this data will be made publicly available for research use. After completion of the project we also plan to share the developed software with other MR researchers and clinicians interested in our methods in order to validate the developed imaging methods at other medical centres and/or to further improve the methodology. Moreover, we will work closely with the manufactures to develop works in progress packages that can be easily shared with other universities or medical centres and that will also allow rapid translation of the developed methods into commercial products of the vendors. This will facilitate wider spread clinical use of this research and enhance the clinical impact of this research. The Division has a Master Research Agreement both with Philips and Siemens providing access to acquisition and reconstruction source code. Philips is currently funding, through our new EPSRC Centre for Doctoral Training (CDT) in Medical Imaging at KCL/Imperial College, one PhD student working on motion corrected 3D T1 mapping under the supervision of the PI, which is relevant to this project. Throughout the project we will post blogs about our latest results on the Division's blog (https://kingsimaging.wordpress.com/) to reach a larger community and to make our research results more accessible to a larger community. In addition, we will participate in the "Pint of Science" 3-day annual festival and present our research results in pubs around London to engage with local communities. We also plan to present to the Public and Patient Involvement Cardiovascular group at Guy's and St Thomas' Hospital to provide updates and receive patient feedback (http://www.guysandstthomasbrc.nihr.ac.uk/PatientsPublic/Getinvolved/Haveyoursay/Cardiovascular.aspx).

Publications

10 25 50
publication icon
Bratis K (2017) 'Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results'. in Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance

publication icon
Curley D (2018) Molecular imaging of cardiac remodelling after myocardial infarction. in Basic research in cardiology

publication icon
Ginami G (2017) 3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography. in Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance

publication icon
Henningsson M (2017) Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease. in Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance

 
Description The key findings of this research after one year are that it is feasible to provide comprehensive assessment of cardiovascular disease with one single pre and post contrast multi-contrast quantitative whole heart cardiac MR imaging sequence. The project is still works in progress but we have received many request from clinicians to collaborate with us in order to validate our developments in patients with cardiovascular disease.
Exploitation Route It is very likely that imaging clinicians will find many new clinical applications for the MR sequences we have developed.
Sectors Digital/Communication/Information Technologies (including Software),Healthcare,Pharmaceuticals and Medical Biotechnology

 
Description Charité Berlin 
Organisation Charité Campus Virchow - Hospital
Country Germany 
Sector Academic/University 
PI Contribution We have provided the partner with a cardiac PET-MR sequence and two multi-contrast whole heart MRI sequences for validation in patients with coronary artery disease.
Collaborator Contribution There are no contributions yet as we are waiting for the signing of the material transfer agreement.
Impact None so far.
Start Year 2018
 
Description Technical University Munich 
Organisation Technical University of Munich
Department Department of Nuclear Medicine
Country Germany 
Sector Academic/University 
PI Contribution We have developed a novel motion corrected cardiac PET-MR sequence that allows to simultaneously acquire a coronary MR angiogram and the PET list mode data whereby motion correction is performed in 2 steps; First translational motion correction is performed using the MR image navigator and secondly both the MR and PET data a assigned to 4-5 respiratory bins. From the binned MR data, non-rigid motion fields are estimated that are then used to correct both the MR and PET data on a bon-to-bin basis. We provided our collaborators in Munich with this novel sequence, wich has been published in MRM and they used this PET-MRI imaging sequence in patients with coronary occlusion.
Collaborator Contribution Our partners recruited 15 patients with coronary occlusion, as confirmed by x-ray angiography, and scanned those patients with our novel PET-MR sequence. They performed the PET image analysis before and after motion correction. This study demonstrated that MR based motion correction can improve PET myocardial viability images. In some patients a mural infarct was re-classified as non-transmural after motion correction. The study has been submitted to the European Journal of Nuclear Medicine.
Impact The results of this collaboration has been submitted to the European Journal of Nuclear Medicine.
Start Year 2017
 
Description University of Bordeaux 
Organisation University of Bordeaux
Country France 
Sector Academic/University 
PI Contribution We have provided our collaborators from the electrophysiology department with novel MRI pulse sequences (acquisition and reconstruction software) that we developed, which their are planning to use our MR sequences in large animal models and patients to perform myocardial tissue characterisation to guide interventional procedures.
Collaborator Contribution So far our partner have not produced any results as we are still waiting for a material transfer agreement to be signed.
Impact None so far.
Start Year 2018
 
Description University of Nantes 
Organisation University of Nantes
Country France 
Sector Academic/University 
PI Contribution We are providing our partner with novel MRI sequences that we have to developed in order to test those in patients with cardiovascular disease. The aim is to validate if our MRI sequences will allow detecting coronary intraplaque haemorrhage, which is considered a novel biomarker for future coronary events.
Collaborator Contribution No output yet, as we are waiting to sign a material transfer agreement.
Impact No outputs yet.
Start Year 2018
 
Title Development of image navigator for respiratory motion correction in whole heart MRI 
Description We developed a new motion correction technique, which employs low resolution 2D images of the heart, prior to data acquisition to correct for respiratory motion on a heartbeat to heartbeat basis. The image navigator has been implemented both in the Philips and Siemens MR acquisition and reconstruction software and provides the clinician both with non-corrected and motion corrected images at the scanner console. 
Type Of Technology Software 
Year Produced 2018 
Impact The image navigator allows for 100% scan efficiency without any data rejection and makes whole heart MRI more reliable and scan time predictable compared to gating approaches, which can lead to prolonged scan times. The image navigator has been combined with several whole heart sequences (coronary MRA, late gadolinium enhancement, magnetisation transfer ratio, T1 and T2 mapping). We have now started several collaboration with academic institutions that are interested in evaluating this technology in patients with heart disease. 
 
Description Pint of Science activity in London 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact We presented our work at the Pint of Science in London where we had several talks about the use of medical imaging for the diagnosis and treatment of heart disease.
Year(s) Of Engagement Activity 2016
 
Description Royal Society Summer Science Festival 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact We took part of the Royal Society Summer Science Festival and had a stand demonstrating our research in cardiovascular imaging called "Heart in your Hands". Several hundred people attended our stand every day and all attendees were very engaged with our PhD students and postdocs who explained our research in lay words.
Year(s) Of Engagement Activity 2017