Modelling Mixing Mechanisms in 1D Water Network Models

Lead Research Organisation: University of Sheffield
Department Name: Civil and Structural Engineering

Abstract

The management of water quality in rivers, urban drainage and water supply networks is essential for ecological and human well-being. Predicting the effects of management strategies requires knowledge of the hydrodynamic processes covering spatial scales of a few millimetres (turbulence) to several hundred kilometres (catchments), with a similarly large range of timescales from milliseconds to weeks. Predicting underlying water quality processes and their human and ecological impact is complicated as they are dependent on contaminant concentration. Current water quality modelling methods range from complex three dimensional computational fluid dynamics (3D CFD) models, for short time and small spatial scales, to one-dimensional (1D) time dependent models, critical for economic, fast, easy-to-use applications within highly complex situations in river catchments, water supply and urban drainage systems. Mixing effects in channels and pipes of uniform geometry can be represented with some confidence in highly turbulent, steady flows. However, in the majority of water networks, the standard 1D model predictions fall short because of knowledge gaps due to low turbulence, 3D shapes and unsteady flows. This Fellowship will work to address the knowledge gaps, delivering a step change in the predictive capability of 1D water quality network models. It will achieve this via the strategic leadership of a programme of laboratory and full-scale field measurements, the implementation of system identification techniques and active engagement with primary users. The proposal covers aspects from fundamental research, through applications, to end-user delivery, by providing a new modelling methodology to inform design, appraisal and management decisions made by environmental regulators, engineering consultants and water utilities.

Planned Impact

1D water quality network models are used in water supply, urban drainage and river catchment management. Regulators, operators, consultants, service suppliers and software developers have acknowledged the inadequacy of current knowledge and have welcomed this initiative to generate improved integrated understanding and more robust management tools. Evidence of this is provided in the strong Statements of Support from the key relevant regulators, Environment Agency and Drinking Water Inspectorate; through active, industry-leading consultants (Clear/RPS, Mouchel, JBA, WRc) who provide engineering guidance across the range of water network systems, to a major UK water utility (Severn Trent Water Ltd, who are required under the Water Framework Directive to implement cost-effective measures and to supply drinking water to achieve specific standards); and major international software developers (DHI). Additionally, Unilever, a major multi-national consumer products company, with expertise in environmental assessment, is providing guidance on wider catchment-scale applications. In the longer term, society will benefit significantly from the implementation of more accurate 1D water quality models as rural and urban environments will become better places to live, with improved water quality, and added biodiversity and amenity values.
Improved knowledge, application and impact from this proposal will contribute to the UK establishing itself as an innovation powerhouse in the global water technology sector, which the recent UKWRIP report estimates, in the period up to 2020, to amount to over $50 billion.
How will they benefit from this research?
- Regulators, utilities, and consultants will benefit directly from the new descriptions of mixing within network components and improved, validated modelling methodologies that will lead to better-informed network design, maintenance and management decisions.
- Academics and practitioners will benefit from rigorous methodologies for experimental and numerical mixing and residence time characterisation that will have generic value for future research and development activities relating to all types of mixing and water quality processes.
- Benefit to research staff - Staff engaged on the project will work within a high calibre research environment, with strong international links, undertaking fundamental research through to applied field studies and state-of-the-art model development, whilst interacting with regulators, utilities and a range of consultants. This represents a unique and highly valued skill set that will equip them to progress authoritatively into academic or practitioner roles within the global water technology sector.
 
Title Pipe Flow Visualisations Dataset 
Description This dataset contains visualisations of pipe flow at different Reynolds numbers, illustrating laminar, transitional, and turbulent flow regimes. This data has been collected and uploaded under ESPRC grant EP/P012027/1. 
Type Of Art Film/Video/Animation 
Year Produced 2023 
URL https://figshare.shef.ac.uk/articles/media/Pipe_Flow_Visualisations_Dataset/23791491
 
Title Slides from the Mixing Processes in Pipes, Sewers & the Natural Environment from Theory to Practice workshop 
Description This dataset contains the slides presented at the workshop on mixing processes in pipes, sewers and the natural environment from theory to practice on the 18th and 19th of April 2023 at the University of Sheffield. This workshop, supported by the EPSRC and IAHR, was organised by Professor Ian Guymer to bring together researchers, environmental regulators, engineering consultants and water utilities, to hear the latest international research on mixing processes.File names are in the format of "Day X - YY Name - Presentation title", where X is the workshop day and YY is the order of presentation. The files are in the PDF format. Some images have been removed to comply with copyright.Please visit https://www.sheffield.ac.uk/mixing-studies/ for more information. 
Type Of Art Film/Video/Animation 
Year Produced 2023 
URL https://figshare.shef.ac.uk/articles/presentation/Slides_from_the_Mixing_Processes_in_Pipes_Sewers_t...
 
Description Improved descriptions of contaminant transport in drinking water distribution systems; developed approaches for determining and modelling travel times and dispersion within urban drainage systems; quantified the mixing of pollutants within vegetated rivers and open channels.
Exploitation Route Open Access data will enable model development to improve descriptions of water quality processes in areas of water distribution, sewers and river systems.
Sectors Construction

Environment

URL https://www.sheffield.ac.uk/mixing-studies
 
Title Fluorescent dye traces in four UK sewer networks 
Description This dataset describes experimental fluorescent dye traces (temporal concentration profiles) recorded in manholes within combined sewer networks located in four different cities across the United Kingdom. It accompanies the journal article entitled "Quantifying mixing in sewer networks for source localisation" (Sonnenwald et al., submitted). This dataset was collected by Professor Ian Guymer and colleagues. This archive was funded by EPSRC grant EP/P012027/1 and the UK Health Security Agency. 
Type Of Material Database/Collection of data 
Year Produced 2022 
Provided To Others? Yes  
URL https://figshare.shef.ac.uk/articles/dataset/Fluorescent_dye_traces_in_four_UK_sewer_networks/204802...
 
Title Longitudinal and transverse dispersion within cylinder arrays with varying cylinder diameter distributions 
Description This dataset describes CFD simulations run at the University of Sheffield in 2019-2020 to investigate the effects of stem size distribution on dispersion within random cylinder arrays. It reports geometry characteristics, model results, and dispersion coefficients. 159 geometries were generated and 137 CFD simulations were run consisting of combinations of 8 stem diameter distributions and 20 solid volume fractions. This dataset was created by Dr Fred Sonnenwald under EPSRC grant EP/P012027/1. It accompanies the journal article entitled "The Impact of Cylinder Diameter Distribution on Longitudinal and Transverse Dispersion within Random Cylinder Arrays". 
Type Of Material Database/Collection of data 
Year Produced 2021 
Provided To Others? Yes  
URL https://figshare.shef.ac.uk/articles/dataset/Stem_Diameter_Distribution_transverse_and_longitudinal_...
 
Title Temporal Concentration Profiles in Steady and Unsteady Pipe Flow 
Description This dataset describes experimental solute traces (upstream and downstream temporal concentration profiles) recorded at the University of Warwick from 2010-2013 in steady and unsteady pipe flow. It accompanies the journal articles entitled "Residence Time Distributions for Turbulent, Critical, and Laminar Pipe Flow" (Hart et al., 2016) and "Longitudinal Dispersion in Unsteady Pipe Flows" (Hart et al., 2021). This dataset was collected by Dr James Hart (Hart, 2013). Dr Fred Sonnenwald uploaded this archive under EPSRC grant EP/P012027/1. 
Type Of Material Database/Collection of data 
Year Produced 2023 
Provided To Others? Yes  
URL https://figshare.shef.ac.uk/articles/dataset/Temporal_Concentration_Profiles_in_Steady_and_Unsteady_...
 
Description Enhanced Water Quality Model for Water Distribution Networks 
Organisation United States Environmental Protection Agency
Country United States 
Sector Public 
PI Contribution Sheffield is leveraging cutting edge experimental measuring devices for investigating dispersion in piped systems with increased accuracy. Within the department, Professor Guymer developed a 2D in-pipe laser induced fluorescence (LIF) concentration measurement system that can measure cross-sectional concentrations for improved understanding of developing flow and stable flow conditions. Understanding and being able to predict or model these phenomena are important for accurately predicting the fate and transport in piped or open-channel systems. His work has also focused on building more understanding of the developing flow conditions (i.e., accelerating or decelerating flow) which occur frequently in premise plumbing systems where water is accelerated from stagnant conditions or changed during uses. Data provided or generated from the University of Sheffield will be valuable in growing our understanding in this area and validating any models.
Collaborator Contribution EPA's Safe and Sustainable Water Research (SSWR) and Homeland Security (HS) National Research Programs (NRP) have led the development of tools to predict and model hydraulics and water quality in water distribution systems. EPANET is a water distribution system modeling tool that was developed in the 1990's and has since been used worldwide and is the foundation of many commercial software tools. The current version, EPANET 2.2, relies on an advection only assumption of chemical fate and transport for water quality modeling. EPANET-MSX 2.0 (Multi-Species eXtension) was recently released with a simple one-dimensional treatment of dispersion to provide more flexibility to include dispersion when needed. Furthermore, an unreleased 2D-RWPT (two-dimensional random walk particle tracking) model was recently demonstrated in a journal article to improve understanding of dispersion processes.
Impact None to-date
Start Year 2022
 
Description This package implements the compartmental mixing model described in the journal article Predicting manhole mixing using a compartmental model (Sonnenwald et al., submitted). This model uses jet theory to divide a manhole into multiple zones and work out the exchange between zones. Using these values, the model then uses compartmental mixing theory to predict downstream concentrations based on upstream concentrations. This document outlines running the model and how the code functions. The accompanying document Further details and equations of a compartmental model for describing mixing in manholes provides the theoretical background and equations used. 
Type Of Technology Software 
Year Produced 2021 
Open Source License? Yes  
URL https://figshare.shef.ac.uk/articles/software/Code_for_a_compartmental_model_for_describing_mixing_i...
 
Description IAHR Key Note lecture 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact On-line presentation to ~300 Conference participants
Year(s) Of Engagement Activity 2020
URL https://iahr2020.pl/keynote-lectures/
 
Description Interview for Polish Academy of Sciences magazine 
Form Of Engagement Activity A magazine, newsletter or online publication
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact -
Year(s) Of Engagement Activity 2020
 
Description Invited lecturer to ISH2023 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact Professor Ian Guymer was invited to lecture at the 40th International School of Hydraulics by the school chairs, delivering his talk in Katy Rybackie, Poland, on the 25th of May 2023.
Year(s) Of Engagement Activity 2023
URL https://ish2023.igf.edu.pl/
 
Description Keynote lecture at 9th International Symposium on Environmental Hydraulics, 18- 22 July 2021, Seoul, Republic of Korea. 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact International conference to generate discussion around the physical processes contributing to longitudinal dispersion on the natural environment. Generated several questions, good discussion and follow up exchanges.
Year(s) Of Engagement Activity 2021
URL https://sites.google.com/view/9thiseh/keynote-lectures
 
Description Kick-off meeting for Prof. Ian Guymer's EPSRC Fellowship, 16/01/2018 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Professional Practitioners
Results and Impact Kick-off meeting for Prof. Ian Guymer's EPSRC Fellowship, 16/01/2018
Year(s) Of Engagement Activity 2018
 
Description Mixing Processes in Pipes, Sewers & the Natural Environment from Theory to Practice 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Other audiences
Results and Impact Hosted by the University of Sheffield on 18th & 19th April 2023, and supported by the EPSRC (EP/P012027/1) and IAHR, this workshop was organised by Professor Ian Guymer to bring together researchers, environmental regulators, engineering consultants and water utilities, to hear the latest international research on mixing processes. The workshop was a great success with over 50 people attending the in-person talks each day.
Year(s) Of Engagement Activity 2023
URL https://www.sheffield.ac.uk/mixing-studies/outreach/2023-meeting