gMOT: Scaleable manufacture and evaluation of miniature cold atom traps
Lead Research Organisation:
University of Glasgow
Department Name: School of Engineering
Abstract
The gMOT project will play a key role in the UK's strategic programme to bring the remarkable new capabilities of quantum physics out of research labs and into real world applications. Kelvin Nanotechnology, TMD Technologies and the Universities of Strathclyde and Glasgow have teamed up to create the first miniature cold atom trap source for deployable quantum technologies. This will bring together key processes developed by the partners in areas that include diffractive optics design and fabrication, innovative bonding and sealing methods, physics package encapsulation, complex alkali metal vapour filling techniques and performance evaluation methods. Combining these individual technologies into working prototypes units will also enable rigorous testing by industrial users to assess performance, stability and suitability for the next generation of quantum technology systems in a wide variety of industrial applications.
Planned Impact
The potential disruptive nature of Quantum Technology has been recognised by the UK Government through its investment in the area announced in 2013. Through the ongoing translational work in e.g. atomic sensors and metrology it is becoming increasingly clear, that potential commercial devices will share a range of common components or build on shared platforms in areas such as laser sources, optical systems, vacuum technology and control electronics.
Close integration of component development between highly specialised technology providers and academia provide the foundation for the translation of some of the research-based outcomes (e.g. from the Quantum Technology Hubs) to the industrial environment and early adopters. This is also a key component in the strategic development of the UK supply chain, that will ultimately form the basis for a new Quantum Technology industry.
With the present proposal, we seek to build on links with two industrial collaborators with significant expertise relevant for the creation of autonomous and miniaturised vacuum systems for cold-atom based sensor and metrology applications. While the technology will be developed specifically for laser cooling of Rb, and hence aimed at a substantial fraction of both the research market and the expected early commercial applications, it is a generic technology, that readily can be adapted to e.g. other alkali metal or alkaline earth systems. It is therefore anticipated that the impact of the work will extend beyond the immediate applications with significant potential for commercial exploitation to areas such as the basic research environment and space applications.
Close integration of component development between highly specialised technology providers and academia provide the foundation for the translation of some of the research-based outcomes (e.g. from the Quantum Technology Hubs) to the industrial environment and early adopters. This is also a key component in the strategic development of the UK supply chain, that will ultimately form the basis for a new Quantum Technology industry.
With the present proposal, we seek to build on links with two industrial collaborators with significant expertise relevant for the creation of autonomous and miniaturised vacuum systems for cold-atom based sensor and metrology applications. While the technology will be developed specifically for laser cooling of Rb, and hence aimed at a substantial fraction of both the research market and the expected early commercial applications, it is a generic technology, that readily can be adapted to e.g. other alkali metal or alkaline earth systems. It is therefore anticipated that the impact of the work will extend beyond the immediate applications with significant potential for commercial exploitation to areas such as the basic research environment and space applications.
Organisations
Description | Know how for the manufacture of grating magneto optical traps using nano imprint lithography was developed and translated to Kelvin Nanotechnology to allow them to sell products in the quantum technology market. |
Exploitation Route | There is interest from the companies in developing future products with further joint research programmes. |
Sectors | Aerospace Defence and Marine Agriculture Food and Drink Digital/Communication/Information Technologies (including Software) Electronics Energy Environment Financial Services and Management Consultancy Healthcare Government Democracy and Justice Manufacturing including Industrial Biotechology Pharmaceuticals and Medical Biotechnology Security and Diplomacy Transport |
Description | The techniques and know how have developed a gMOT product which Kelvin Nanotechnology are now selling and they have been exported to a number of countries including the US, France and Germany. Also TMD now also have a miniature vacuum chamber with a gMOT that is on sale. |
First Year Of Impact | 2021 |
Sector | Aerospace, Defence and Marine,Agriculture, Food and Drink,Digital/Communication/Information Technologies (including Software),Electronics,Energy,Environment,Financial Services, and Management Consultancy,Healthcare,Government, Democracy and Justice,Manufacturing, including Industrial Biotechology,Security and Diplomacy,Transport |
Impact Types | Economic |
Description | Chair of MOD Semiconductor Review |
Geographic Reach | National |
Policy Influence Type | Contribution to a national consultation/review |
Impact | MOD has changed procurement policies to guarantee access to strategic technologies such as semiconductors from specific UK companies. Also the work created what is now the MOD semiconductor strategy which has been put into policy. |
Description | Prof Douglas Paul represented MOD at the Future Position Navigation and Timing Technology Cooperation Programme meeting in the USA |
Geographic Reach | Multiple continents/international |
Policy Influence Type | Membership of a guideline committee |
Impact | national security programme on future position, navigation and timing with UK, USA, Canada, New Zealand and Australia |
URL | https://www.acq.osd.mil/ttcp/ |
Description | Bid for new Electron-Beam Lithography Tool |
Amount | £2,000,000 (GBP) |
Funding ID | EP/P030459/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 03/2017 |
End | 06/2019 |
Description | DISCOVERY: Developing UK Industrial Supply for Commercial Quantum Computing |
Amount | £7,160,242 (GBP) |
Funding ID | 50133 |
Organisation | Innovate UK |
Sector | Public |
Country | United Kingdom |
Start | 06/2020 |
End | 07/2023 |
Description | Royal Academy of Engineering Chair in Emerging Technologies |
Amount | £2,780,000 (GBP) |
Funding ID | CiET2021_123 |
Organisation | Royal Academy of Engineering |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 09/2020 |
End | 09/2030 |
Description | UK National Quantum Technology Hub in Sensing and Timing |
Amount | £27,537,628 (GBP) |
Funding ID | EP/T001046/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 12/2019 |
End | 11/2024 |
Description | Talk to MOD Defence Technology Innovation Board on "A Guide to the Benefits of Quantum Sensors" |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | This talk was to the MOD Defence Technology Innovation Board which includes the MOD 2nd public under secretary, the MOD Chief Scientific Advisory, the Head of the Defence Science Expert Committee and all the 3* seniors from the 5 MOD Commands plus their entourages. It was given in December 2022 at a time that MOD was still deciding whether to support phase 3 of the UK National Quantum Technology Programme. As MOD supported phase 3 of the UK National Quantum Technology Programme this talk and the discussions may well have helped as it showed a competitive analysis of where quantum technology provides benefits to UK defence and national security. I was requested to give the same talk to 4 other UK Government Agencies afterwards suggesting it had a significant impact on future policy. |
Year(s) Of Engagement Activity | 2022 |
Description | Virtual talk on "A Guide to the Benefits of Quantum Sensors" to the Department for Transport |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | This was a talk providing a review of where quantum technology can provide benefits for transport applications. This included competitive analysis to show where quantum sensors provide superior performance to present classical sensors and some examples of applications in transport where quantum sensors could be used. |
Year(s) Of Engagement Activity | 2023 |