PRISM: Platform for Research In Simulation Methods

Lead Research Organisation: Imperial College London
Department Name: Dept of Aeronautics


Computational science is a multidisciplinary research endeavour spanning applied mathematics, computer science and engineering together with input from application areas across science, technology and medicine. Advanced simulation methods have the potential to revolutionise not only scientific research but also to transform the industrial economy, offering companies a competitive advantage in their products, better productivity, and an environment for creative exploration and innovation.

The huge range of topics that computational science encapsulates means that the field is vast and new methods are constantly being published. These methods relate not only to the core simulation techniques but also to problems which rely on simulation. These problems include quantifying uncertainty (i.e. asking for error bars), blending models with data to make better predictions, solving inverse problems (if the output is Y, what is the input X?), and optimising designs (e.g. finding a vehicle shape that is the most aerodynamic). Unfortunately, the process through which advanced new methods find their way into applications and industrial practice is very slow.

One of the reasons for this is that applying mathematical algorithms to complex simulation models is very intrusive; mostly they cannot treat the simulation code as a "black box". They often require rewriting of the software, which is very time consuming and expensive. In our research we address this problem by using automating the generation of computer code for simulation. The key idea is that the simulation algorithm is described in some abstract way (which looks as much like the underlying mathematics as possible, after thinking carefully about what the key aspects are), and specialised software tools are used to automatically build the computer code. When some aspect of the implementation needs to change (for example a new type of computer is being used) then these tools can be used to rebuild the code from the abstract description. This flexibility dramatically accelerates the application of advanced algorithms to real-world problems.

Consider the example of optimising the shape of a Formula 1 car to minimise its drag. The optimisation process is highly invasive: it must solve auxiliary problems to learn how to improve the design, and it be able to modify the shape used in the simulation at each iteration. Typically this invasiveness would require extensive modifications to the simulation software. But by storing a symbolic representation of the aerodynamic equations, all operations necessary for the optimisation can be generated in our system, without needing to rewrite or modify the aerodynamics code at all.

The research goal of our platform is to investigate and promote this methodology, and to produce publicly available, sustainable open-source software that ensures its uptake. The platform will allow us to make advances in our software approach that enables us to continue to secure industrial and government funding in the broad range of application areas we work in, including aerospace and automotive sectors, renewable energy, medicine and surgery, the environment, and manufacturing.

Planned Impact

Academic and industrial users of computational modelling software will benefit from this research since the outputs of the platform will give them access to robust performance-portable implementations of advanced simulation methods, including the composition of models with mathematical algorithms that can solve optimisation problems, quantify uncertainty, assimilate data, etc. This includes our own industrial collaborators from BAE Systems, Airbus, McLaren Racing, Rolls Royce, Arup Consulting, Meygen, EDF, AMEC, Shell, BP, Intel and NVIDIA. Computational modelling is becoming a greater part of the digital economy as a replacement for physical prototyping for many of these industries. Advanced computational modelling can be used to allow high-tech companies to obtain an edge over competitors, to improve productivity in their processes and products, and to provide a environment for creativity and innovation. We also collaborate with public sector research centres such as the UK Met Office, the National Oceanographic Centre in Southampton and Liverpool, and the British Antarctic Survey, for whom the improved modelling capability will enable them to better inform government policy on energy and the environment.

The platform team have an exceptional track record of delivering professionally engineered software tools which, in contrast to much academic software, are well designed, robustly tested, comprehensively documented and ready for translation into production use. This key distinguishing point is critical in guaranteeing that effective wider impact is actually achieved. The institutionalization of best practice in scientific software development also creates maintainable software with an effective and usable life far beyond that of the platform.

There is a continuing need for multidisciplinary researchers with skills in computer science, computational mathematics and numerical modelling. Our Platform grant will enable training in multiple disciplines to address this demand from both industry and academia. Our Platform directly targets the barriers to impact that prevent sophisticated modelling techniques from finding widespread application in industry and science. Further, software tools developed in the platform will support systematic, flexible mapping from the science and engineering "business requirements" of a numerical modelling project right down to the gates and wires of a computational simulation.

We will ensure the impact is maximized by holding regular events where we showcase our work and share ideas with industrial collaborators, and give our researchers the opportunity to network, including a stakeholder input workshop upon renewal. We will fund projects that bring our researchers into direct contact with industrial partners, building proof-of- concept products and interacting on benchmarks and challenges; thus disseminating our ideas and software and collecting industrial user needs. Further, we will aim to influence and keep up with the latest innovations from hardware vendors. The type of multidisciplinary experience that we provide to researchers on this project will make them experts in both numerical modelling and the necessary computer science and software engineering foundations, ensuring they become very employable within both academia and industry.


10 25 50
Description The PI was invited to participate in a Blackett Review on modelling due to his role in this Platform grant and its predecessor.
Sector Aerospace, Defence and Marine,Environment,Transport
Impact Types Policy & public services

Description McLaren Racing 
Organisation McLaren Racing
Country United Kingdom 
Sector Private 
PI Contribution We have transferred fundamental ideas behind vortex stability and identification to their design practice. More recently we are been applying computational modelling tools developed in an academic setting to example flow problems of direct interest to McLaren.
Collaborator Contribution Data and motivation on how to focus our research direction
Impact .
Start Year 2007
Description Rolls Royce 
Organisation Rolls Royce Group Plc
Country United Kingdom 
Sector Private 
PI Contribution We have been exploring the application of the Nektar++ software to turbo-machinery problem.
Collaborator Contribution Access to data and expert knowledge of the field as well as exposure to other researcher supported by Rolls Royce
Impact Presentations of methods at international conferences and internal workshops
Start Year 2017
Title Nekmesh: an open-source high-order mesh generator 
Description High-order curvilinear meshes are both an enabler and a bottleneck towards achieving high-resolution flow simulations about complex geometries. The open-source code Nekmesh is the Imperial College London contribution towards improving the high-order mesh generation process, an area where both commercial and academic codes are scarce. Nekmesh has been specifically designed to tackle the significant challenge of automatically generating valid, high-quality curvilinear meshes for complex three-dimensional geometries with a particular emphasis on simulating high-Reynolds number aeronautical and fluid dynamics flows. 
Type Of Technology Software 
Year Produced 2018 
Open Source License? Yes  
Impact One of the very few codes either commercial or academic able to generate high-order meshes from CAD. Unique in allowing generation of meshes with polynomial orders P>4. 
Title Nektar++ Version 4.2.0 
Description Nektar++ is a tensor product based finite element package designed to allow one to construct efficient classical low polynomial order h-type solvers (where h is the size of the finite element) as well as higher p-order piecewise polynomial order solvers. 
Type Of Technology Software 
Year Produced 2015 
Open Source License? Yes  
Impact The Nektar++ framework has been an underpinning framework for a range of solver technologies which at Imperial includes: 1) Incompressible flow simulation and stability analysis related to car aerodynamics with McLaren Racing and offshore engineering 2) Biomedical modelling in atrial arrthymia in collaboration Hammersmith Hospital and Cardiovascular modelling in collaboration with Bioengineering 3) Compressible flow modelling with collaboration with Airbus and more recent interest form Rolls Royce. The wider community of Nektar++ usage can be captured in the following: - It has an active user list currently with 76 registered from Europe, USA, South America, Australia and China - It has an active code development community: Over the past 3.5 years we have had over 4500 commits and had 500 merge requests completed in our Gitlab repository. - Over the past five months, the most recent version of the code (v4.2.0) has been downloaded 2473 times with increasing usage of Debian and Fedora packages. - Our overview paper (doi:10.1016/j.cpc.2015.02.008) was published in Computer Physics Communications in July 2015 and has been either 1st or 2nd on the most downloaded list since this time. - Our inaugural Nektar++ workshop in 2015 had 30 participants from the UK, Europe and Australia. ( - The package is supported on a number of HPC facilities e.g. ARCHER, Argonne/ORNL, INRIA, Imperial HPC cluster (Cx1,Helen) External to imperial our closest development activities are currently with the Universities of Utah and Brown in USA, University of Madrid (Spain), University of Darmstadt (Germany) and the University of Sao Paolo (Brazil). We have also had recent interest from UK users at Cambridge, Nottingham and Loughborogh Universities as well as notable users acvitity from Warsaw University, Harbin Institute of Technology in China, Beihang University, Middle East Technical University, Monash University and the University of Western Australia. 
Title Thetis 
Description A new (coastal) ocean model, in 2D and 3D, using finite element methods, and implemented via the Firedrake framework. Includes an adjoint capability for sensitivity analyses and optimisation. Also includes a preliminary mesh adaptivity capability. 
Type Of Technology Software 
Year Produced 2016 
Open Source License? Yes  
Impact Basis for ongoing collaboration with the wider ocean model development community.