Rosalind Franklin Institute Correlated Imaging Pump Priming

Lead Research Organisation: University of Oxford
Department Name: Materials


The Life Sciences sector forms a key part of the UK economy: it employs over 220,000 people, contributes significantly to GDP and UK balance of trade, and is crucial for developing leading-edge treatments for patients. It is underpinned by the UK's world-leading research base in the health and life sciences. Many key research breakthroughs are, in turn, enabled by advances in engineering and physical sciences (EPS) research - which provide ever more sophisticated instrumentation and methods to support the study of living organisms (from microbes to plants, animals and the human body) and biological processes (including both disease pathology and drug action). R&D across all parts of this ecosystem - from fundamental understanding to applied research to product development - is crucial for the delivery of long-term economic growth and continued advances in agriculture, food security, healthcare and
public health. Historic models of innovation have often been linear, involving a degree of serendipity. Disruptive technologies and scientific breakthroughs will be accelerated if physical scientists, engineers, life scientists and industry work together, and at scale. This is the domain of the Rosalind Franklin Institute (RFI): with a focal point (Hub) at Harwell Science and Innovation Campus, linked to formal Spokes in leading HEIs across the UK, it will integrate complementary expertise from academia and industry to create a national centre of excellence for methods development at the convergence of the physical and life sciences.

A key component of the RFI is to develop disruptive next-generation correlated imaging technologies across cm-pm length scales and including temporal and spectral correlation (the correlated imaging, CI Theme) that will enable step changes in our understanding of cell and disease biology, and the non-invasive diagnosis and treatment of some conditions.
It will create high-value jobs, protect and attract inward investment, and drive long-term growth; and contribute to the delivery of the Government's innovation, industrial and regional strategies.

This grant is to support the design and development of three key components for the next generation of CI ( as detailed in the science and business cases approved by BEIS) namely an aberration corrected pulsed electron microscope for visualising dynamic events at the atomic level; a dual beam FIB which forms a platform for the development of integrated hardware and software and a fast direct electron detector including a sensor based on GaAs.

Planned Impact

The RFI will deliver a broad range of inter-connected benefits to the UK economy.
These will fall into two categories:
- direct outputs from the RFI itself (mostly in the short or medium-term); and
- long-term impacts delivered by third parties, enabled by the application of RFI outputs.

The primary driver for creating the RFI is to realise eventual impact via clinical or industrial application alongside novel methods that will also have a disruptive effect on discovery research, helping to maintain UK leadership in the life sciences. Thus, there will be varying routes and timelines to the final economic and societal impacts.
In the CI Theme there exists direct industry involvement in instrument design and development supporting scientists with scarce skills.

The direct outputs of the CI Theme are:
- Disruptive imaging methods (including dynamic and multi-modal techniques) spanning an unprecedented range of length and timescales.
- High-value, high-skill job creation (from Year 2), including apprenticeship opportunities.
- Enhanced UK skills base in instrument design and manufacture . Collaborations with industrial partners will see RFI staff spend time abroad before returning to the UK to install prototype instruments in the RFI, working alongside industry engineers.

Longer-term impacts from the application of disruptive technologies developed in the CI theme include:
- New imaging methods will allow study of processes over time and at real-world scales - transforming our understanding of cell biology and disease pathology (in humans, animals and crops), and our ability to study how drugs work (drug action).


10 25 50
Description The design of a new chromatic aberration corrector
Exploitation Route Potential future technology licensing
Sectors Education,Energy

Description Instrument Development with JEOL Ltd 
Organisation Jeol UK Ltd
Country United Kingdom 
Sector Private 
PI Contribution Joint development of a time resolved TEM
Collaborator Contribution Joint development of a time resolved TEM
Impact None to date
Start Year 2018