Manufacturing in Hospital: BioMed 4.0

Lead Research Organisation: University of Bath
Department Name: Chemical Engineering

Abstract

Although British healthcare/biomedical manufacturing generates £70 billion/year and 240,000 jobs; its most important yield is a healthy, functional, thriving society. Unexpected externalities such as supply chain disruptions, sustainability requirements and socioeconomic circumstances (e.g. Brexit, COVID-19) pose a threat to this sector and more importantly to the wellbeing of Britain's population. To cope with these threats, it is imperative to develop new and strengthen existing technologies capable of manufacturing precise high-value, patient-personalised products in decentralised settings.

Additive manufacturing technologies, such as 3D printing, have shown these characteristics as they enable prototyping and manufacturing customized products on-site in a rapid, and economic manner. Certainly, 3D printing has revolutionized manufacturing practices and generated tremendous economic benefits to economies worldwide; for instance, in the UK, 3D printing has a revenue of £2.4bn annually. Even so, this technology has major technical issues including, feedstock-performance dependency (printing needs to be calibrated depending of the plastic used), excessive plastic waste production (a major environmental concern), poor printing resolution (nanometer-size structures cannot be printed) and low flexibility in its operation mode (cannot produce long fibres, particles). These technical drawbacks significantly hinder the deployment of 3D printing in many healthcare/biomedical settings.

Inspired by the response of organisms to environmental conditions, this project will develop a novel responsive additive technology (named eHD-3D printing) capable of responding autonomously to feedstock and product requirements, while addressing each of the challenges present in modern 3D printing technologies. To achieve these transformative characteristics, we will integrate bio-inspired modalities (e.g. sensing, thinking and moving). We will employ novel analytical tools that enable sensing the type of material/plastic fed into the unit. This information coupled with the characteristics of the product will allow an AI-algorithm to determine the best operating conditions and operation mode. Beyond conventional 3D printing, the eHD-3D unit will be able to generate particles (0D) and fibres (1D) with a nano-metric resolution, enabling the manufacture of complex multi-scaled structures. Moreover, to demonstrate the transformative features of the eHD-3D unit, a range of geometrically and structurally diverse tissue scaffolds will be manufactured.

Publications

10 25 50
 
Title BioMed 4.0 logo and artwork 
Description Dr Jasmine Lightfoot PDRA in the BioMed project created the BioMed 4.0 logo and artwork for the website, seeking to make our projects more accessible to anyone who visits the website 
Type Of Art Artwork 
Year Produced 2023 
Impact Seeking to make our projects more accessible to anyone who visits the website 
URL https://materialsforhealthlab.org/biomed4point0/members/
 
Description Faculty Equipment Bid - Infrared system and probe
Amount £73,500 (GBP)
Organisation University of Bath 
Sector Academic/University
Country United Kingdom
Start 10/2021 
End 03/2022
 
Description Royal Society International Exchange Scheme
Amount £12,000 (GBP)
Funding ID IEC\R2\212100 
Organisation The Royal Society 
Sector Charity/Non Profit
Country United Kingdom
Start 12/2021 
End 11/2023
 
Description University Equipment Bid Nanobioprinter
Amount £510,000 (GBP)
Organisation University of Bath 
Sector Academic/University
Country United Kingdom
Start 01/2023 
End 03/2023
 
Title Controller for 3D printer with electrospinning 
Description Software controller that has been developed to have full control of a 3D printed and monitor printing parameters. This software will also allow us to continue with the development of a hybrid system capable of 3D printing by switching between electromelting teachnology and standard fuse deposition modelling technology. 
Type Of Technology Systems, Materials & Instrumental Engineering 
Year Produced 2022 
Impact Full control of a low-cost 3D printer that can adapted for automation processes. Potential integration with ROS middleware for interoperability with other systems. 
URL https://github.com/inte-R-action/smartPrinting
 
Description I am scientist ask me anything 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact The research team, Sandhya Moise, Sadeka Nujhat and Hannah Leese, took part in a a Reddit ask me anything event, where we discussed our research in ovarian cancer detection and shared information of our research. We had over 1000 upvotes and about half a million user views.
Year(s) Of Engagement Activity 2022
URL https://www.reddit.com/r/IAmA/comments/zg01mt/were_sadeka_nujhat_hannah_leese_and_sandhya_moise/
 
Description Online talk for Public Engagement - Latin America 
Form Of Engagement Activity A broadcast e.g. TV/radio/film/podcast (other than news/press)
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Public/other audiences
Results and Impact This activity was an online webmnar/presentation, intended to inform the general public in Latin America of our research. The space was provided by Fundacion UNAM - a philanthropic organization from the National University of Mexico. The activity instilled questions from people all over Latin America and the webinar has received >200 views.
Year(s) Of Engagement Activity 2022
URL https://www.youtube.com/watch?app=desktop&v=Mm74he_dEcM
 
Description Seminar talk at the Mathematics Applications Consortium for Science and Industry (University of Limerick) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Postgraduate students
Results and Impact ~50 academics (including professors, staff, PhD students and undergraduates) from he Mathematics Applications Consortium for Science and Industry at the University of Limerick attended the seminar, which sparked questions about the idea of having a system agnostic to feedstock. This talk instilled conversations for future collaborations and we are currently looking into applying for an EPSRC-SFI grant.
Year(s) Of Engagement Activity 2022