A capability for patterning beyond-CMOS devices at atomic scale

Lead Research Organisation: University of Southampton
Department Name: Sch of Electronics and Computer Sci


The twentieth century has witnessed an exceptional technological progress in consumer electronics that has utterly shaped modern societies and economies. This ICT evolution was mainly driven by the invention of the transistor and integrated circuits, with chemistry and materials science playing a pivotal role in manufacturing active devices with distinct and reliable properties that over the past 70 years have been following Moore's scaling trend. The need for continuing advancing the performance of devices and systems is thus driving research efforts in prototyping and demonstrating novel nano-scale concepts at extreme dimensions - towards the single nanometre scale. This is not only important both for commercially available CMOS technologies as well as "beyond-CMOS" technologies that promise to disrupt the current electronics landscape by delivering unprecedented computational at extreme low-power. At the same time, emerging techniques for deep-subwavelength optical imaging based upon AI-enabled analysis of diffracted/scattered light fields are also constrained by current nanoscale precision and accuracy with which training samples can be fabricated.

Electron Beam Lithography has so far supported such developments in the deep-submicron regime by directly patterning resists with a focused beam of electrons. A high acceleration voltage can facilitate the writing of fine and more vertical (better defined) lines, minimise proximity issues, achieve a better pattern fidelity and allow for a wider dose optimisation window. Existing electron beam lithography (EBL) systems in the UK operate at voltages up to 100 kV and can in principle reach writing resolutions down to 5nm. This programme aims at procuring the world's highest acceleration voltage EBL system that can be flexible operated from 25 kV to 150 kV for writing efficiently and fast a wide range of feature sizes (sub-5nm) across large areas, sample substrates (up to 8") and resist thicknesses. This new capability will provide a unique platform (first one in the UK and Europe) for innovation via manufacturing a wide-range of beyond-CMOS devices and nanostructures at unprecedented scales. The knowledge gained with this new instrument will not only contribute to an in-depth understanding of nanodevice physics but also advance developments in disruptive ICT concepts across emerging memory, computing, plasmonics, photonics and sensory architectures. Hosting this unique capability within Southampton's nanofabrication suite brings unique opportunities for usage along other state-of-art tools, including an EPSRC funded DUV Stepper/Scanner, that will support industry compatible wafer scale processing that allows mimicking the manufacturing capability of EUV tools (costing in excess of 100M£) and are used for production at industrial foundries for advanced technological nodes (3, 5 and 7 nm). Finally, the tool will support a diverse, inclusive and collaborative research community, fostering interactions between academia and industry, and enabling innovative research projects and directions.


10 25 50
Description Preliminary experiments have shown the capability to create very high aspect ratio structures in resist, opening the way to make next generation micro-lenses and diffractive optics components.
Exploitation Route Academic and industrial users will be able to exploit new processes for their own applications.
Sectors Aerospace

Defence and Marine

Digital/Communication/Information Technologies (including Software)




including Industrial Biotechology

Description Collaboration with 'Genisys' software company 
Organisation GenISys
Country Germany 
Sector Private 
PI Contribution Collaboration with commercial software company ('Genisys gmbh') for exploitation of unique high KV features of the machine. That requires software simulation and experimental work. Joint publications are anticipated
Collaborator Contribution Contribution of free access to their specialised design software
Impact Work in progress - publications expected next year.
Start Year 2022
Description Specialist workshop hosted 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Postgraduate students
Results and Impact A 3-day training / workshop event was hosted by Southampton in conjunction with Genisys software company (Germany)
A 2 day Software training course was provided for phd students and industrial e-beam lithography equipment users.
A separate 1 day workshop was also held for expert users from around the UK, allowing exchange of ideas, and knowledge.
Facilities and capabilities of our new equipment was also show-cased.
Year(s) Of Engagement Activity 2024