Digital twin guided minimally invasive, intelligent and intuitive surgery (MI-3 Surgery)

Lead Research Organisation: University of Strathclyde
Department Name: Biomedical Engineering

Abstract

Minimally Invasive Surgery (MIS) has altered operative medicine in the past decades in many ways, through reduction of surgical trauma, pain and complications, as compared to open surgery. However, factors such as the requirement for highly trained surgeons and assistants, high cost of devices, aged non-ergonomic instrumentation, lack of precision in 2D videos during laparoscopic operations, loss of three-dimensionality and haptic sense, instrument and operational limitations, and others4, have hindered the use of laparoscopic surgery in wider applications. Recent advances in technology and medicine have the capacity to radically change the future of surgery as we currently know it.

Our research vision is driven by the need to deliver ground-breaking healthcare technologies for safer, more intelligent and effective surgeries via the introduction and integration of next-generation innovations in artificial intelligence (AI), digital technologies, regenerative medicine, biofabrication, modelling, robot-assisted surgery, digital health, medical devices, and transplantation. The development of novel drug-loaded biomaterials and cell therapy procedures can further offer creative prophylactic approaches to surgery.

The ultimate overarching goal is to transform the use of surgery by 2050, from just treating to also preventing recurring diseases. Thus, our high risk/high gain ambition is to revolutionise surgery through the development of innovative healthcare technologies that improve patient care and extend the quality of life for an increasingly ageing population, focusing also on disease prevention. Disease prevention is meant here in the context of early intervention, prophylactic operation, and prevention of illness recurrence or effective management of chronic conditions.
 
Description The study demonstrated the feasibility of developing a digital twin model for guiding surgery, particularly in tumour surgery.
Exploitation Route The Phase I study has laid a strong foundation for the full proposal of the Transformative Healthcare Technologies Call, and it has recently received significant funding support of £4M from EPSRC for the Phase II study.
Sectors Digital/Communication/Information Technologies (including Software),Healthcare,Manufacturing, including Industrial Biotechology

 
Description Olympus Surgical Technologies Europe 
Organisation Olympus
Country Global 
Sector Private 
PI Contribution We introduce the digital twin expertise to the partner.
Collaborator Contribution Olympus provides strong industrial input for the feasibility study and in kind support for the next stage of funding.
Impact The collaboration has led to the next stage of funding from EPSRC with Olympus being a key industrial partner.
Start Year 2021