Software Environment for Actionable & VVUQ-evaluated Exascale Applications (SEAVEA)
Lead Research Organisation:
UNIVERSITY COLLEGE LONDON
Department Name: Chemistry
Abstract
Uncertainty quantification, verification and validation are crucial to establish the reliability and reproducibility of all forms of computer-based simulation. We propose to establish an open source and open development VVUQ toolkit optimised for efficient execution at current pre- and emerging exascale, which will raise new challenges and new opportunities for simulations in fields as diverse as fusion and climate modelling.
Computer simulation results are validated compared with experiment in several ways, ranging from qualitative to quantitative measures which apply a validation metric. Likewise, verification is concerned with confirmation that the mathematical model and corresponding algorithm have been coded correctly. Uncertainty quantification (UQ) is concerned with understanding the origins of and assessing the magnitudes of the errors which accompany computer simulations, whether epistemic or aleatoric.
VVUQ is necessary for any simulation that makes predictions in advance of an event to become actionable - that is, for its output to be useful in any form of decision-making process, from government interventions in pandemics to the choice of materials to combine for aircraft wing production. Here, exascale computing offers more opportunities to make actionable predictions.
Moreover, because VVUQ is intrinsically compute intensive due to its ensemble-based execution pattern, it too requires exascale resources, as well as advanced resource management strategies to efficiently manage the large numbers of concurrent runs necessary.
We propose to establish an open source and open development VVUQ toolkit optimised for efficient execution at current pre- and emerging exascale. This will include advanced approaches for surrogate modelling in order to minimise the expense and time needed to perform the most compute-intensive calculations and will demonstrate its efficiency gains for a diverse array of VVUQ workflows within multiple scientific applications, and on architecturally and geographically diverse emerging exascale environments.
The software developed, implemented and benchmarked in this project will become an open and invaluable asset to the UK ExCALIBUR community but also much more widely within UK and internationally as high-performance computing enters the exascale era.
The proposed exascale toolkit will be built on a combination of widely used tools and services which will be evolved to handle systems of increasing levels of complexity. These include components from the VECMA project (EasyVVUQ, FabSim3, QCG-PJ and EasySurrogate), as well as the UCL-Alan Turing Institute Multi-Output Gaussian Process Emulator (MOGP). We will apply these capabilities to several applications, including: (i) the UKAEA's tokamak fusion modelling use case for which a working software environment will be produced; (ii) weather and climate forecasting for the Met Office; (iii) turbulent flow simulation for environmental science; (iv) prediction of advanced materials properties of graphene-polymer based nanocomposites for aerospace applications; (v) high-fidelity patient-specific virtual human blood flow system for medical research; (vi) drug discovery; and (vii) human migration.
Computer simulation results are validated compared with experiment in several ways, ranging from qualitative to quantitative measures which apply a validation metric. Likewise, verification is concerned with confirmation that the mathematical model and corresponding algorithm have been coded correctly. Uncertainty quantification (UQ) is concerned with understanding the origins of and assessing the magnitudes of the errors which accompany computer simulations, whether epistemic or aleatoric.
VVUQ is necessary for any simulation that makes predictions in advance of an event to become actionable - that is, for its output to be useful in any form of decision-making process, from government interventions in pandemics to the choice of materials to combine for aircraft wing production. Here, exascale computing offers more opportunities to make actionable predictions.
Moreover, because VVUQ is intrinsically compute intensive due to its ensemble-based execution pattern, it too requires exascale resources, as well as advanced resource management strategies to efficiently manage the large numbers of concurrent runs necessary.
We propose to establish an open source and open development VVUQ toolkit optimised for efficient execution at current pre- and emerging exascale. This will include advanced approaches for surrogate modelling in order to minimise the expense and time needed to perform the most compute-intensive calculations and will demonstrate its efficiency gains for a diverse array of VVUQ workflows within multiple scientific applications, and on architecturally and geographically diverse emerging exascale environments.
The software developed, implemented and benchmarked in this project will become an open and invaluable asset to the UK ExCALIBUR community but also much more widely within UK and internationally as high-performance computing enters the exascale era.
The proposed exascale toolkit will be built on a combination of widely used tools and services which will be evolved to handle systems of increasing levels of complexity. These include components from the VECMA project (EasyVVUQ, FabSim3, QCG-PJ and EasySurrogate), as well as the UCL-Alan Turing Institute Multi-Output Gaussian Process Emulator (MOGP). We will apply these capabilities to several applications, including: (i) the UKAEA's tokamak fusion modelling use case for which a working software environment will be produced; (ii) weather and climate forecasting for the Met Office; (iii) turbulent flow simulation for environmental science; (iv) prediction of advanced materials properties of graphene-polymer based nanocomposites for aerospace applications; (v) high-fidelity patient-specific virtual human blood flow system for medical research; (vi) drug discovery; and (vii) human migration.
Organisations
- UNIVERSITY COLLEGE LONDON (Lead Research Organisation)
- Brookhaven National Laboratory (Collaboration)
- IMPERIAL COLLEGE LONDON (Collaboration)
- UK ATOMIC ENERGY AUTHORITY (Project Partner)
- Save the Children (UK) (Project Partner)
- Polish Academy of Sciences (Project Partner)
- Imperial College London (Project Partner)
- UNIVERSITY OF CAMBRIDGE (Project Partner)
- RIKEN (Project Partner)
- Argonne National Laboratory (Project Partner)
- Max Planck Institutes (Project Partner)
- Centrum Wiskunde & Informatica (Project Partner)
- Rutgers State University of New Jersey (Project Partner)
Publications

Ahmad K
(2023)
Structure and dynamics of an archetypal DNA nanoarchitecture revealed via cryo-EM and molecular dynamics simulations.
in Nature communications

Bhati A
(2022)
Large Scale Study of Ligand-Protein Relative Binding Free Energy Calculations: Actionable Predictions from Statistically Robust Protocols
in Journal of Chemical Theory and Computation

Bhati AP
(2023)
Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand-Protein Interactions and Allostery in SARS-CoV-2 Targets.
in Journal of chemical theory and computation

Bieniek MK
(2023)
TIES 2.0: A Dual-Topology Open Source Relative Binding Free Energy Builder with Web Portal.
in Journal of chemical information and modeling

Edeling W
(2023)
On the Deep Active-Subspace Method
in SIAM/ASA Journal on Uncertainty Quantification

Ehara A
(2022)
Multi-level emulation of tsunami simulations over Cilacap, South Java, Indonesia
in Computational Geosciences

Ehara A
(2023)
AN ADAPTIVE STRATEGY FOR SEQUENTIAL DESIGNS OF MULTILEVEL COMPUTER EXPERIMENTS
in International Journal for Uncertainty Quantification

Ehara Ayao
(2023)
AN ADAPTIVE STRATEGY FOR SEQUENTIAL DESIGNS OF MULTILEVEL COMPUTER EXPERIMENTS
in INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION

Groen D
(2023)
FabSim3: An automation toolkit for verified simulations using high performance computing
in Computer Physics Communications

Groen D
(2023)
Facilitating simulation development for global challenge response and anticipation in a timely way
in Journal of Computational Science
Description | RADICAL-Cybertools |
Organisation | Brookhaven National Laboratory |
Country | United States |
Sector | Public |
PI Contribution | We teamed up with the RADICAL-Cybertools development team based in the Brookhaven National Labs, USA to collaborate with us for the SEAVEA project to deal with the technical challenges found in high performance computing to schedule and execute large number of jobs inside the system resource allocation |
Collaborator Contribution | provided us for regular software releases and access for the RADICAL-Cybertools that currently consists of three components: RADICAL-SAGA: a standards-based interface that provides basic interoperability across a range of computing middleware; RADICAL-Pilot: a scalable and flexible Pilot-Job system that provides flexible application-level resource management capabilities, and Ensemble Toolkit that simplifies the ability to implement ensemble-based applications. |
Impact | The released two versions of the RADICAL-Cybertools package for us to access and use in our research. We run monthly meetings with them to get regular updates for progress of work. |
Start Year | 2021 |
Description | SEAVEA: UQ in Fluid Turbulence |
Organisation | Imperial College London |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | We developed the SEAVEA Toolkit to this collaboration for the Imperial team to use to quantifying uncertainties in direct numerical simulations of a turbulent channel flow by a post-doc research fellow. |
Collaborator Contribution | To facilitate the non-intrusive forward UQ analysis, the open-source EasyVVUQ package developed by UCL was used by my partner Imperial College to provide integrated capability for sampling, pre-processing, execution, post-processing, and analysis of the computational campaign. |
Impact | A paper published with the title of "Quantifying uncertainties in direct numerical simulations of a turbulent channel flow". |
Start Year | 2021 |