Spinal facet joints: biomechanical evaluation for improved interventions

Lead Research Organisation: University of Leeds
Department Name: Mechanical Engineering

Abstract

In the UK, four out of five adults suffer from back pain at some point in their life, the treatment of which costs the NHS over a billion per year and the UK economy £10 billion per year. When a surgical option is required (for example after an accident or because of abnormalities in the spine), the gold standard is spinal fusion, an invasive intervention designed to stop the motion of the affected spinal area.

One of the main issues with spinal fusion is that it increases the stress on other area in the spine, in particular on small cartilaginous joints called the facets. Even in a healthy person, the facets are often deteriorated but this rarely cause any symptoms. After spinal fusion however, the deterioration can increase and create new symptoms and long term pain for one in four patients.

There is an urgent need to define the type of patients and procedures for which fusion works best; and to improve devices so that this accelerated deterioration of the facets happens less often. The levels of initial deterioration between patients differs greatly and there is currently a lack of biomechanical evidence that takes into account these large variations when testing fusion devices.

To tackle these issues, this grant will develop novel testing methods and tools combining laboratory simulation with computer modelling. These methods will be used to predict the variation in the mechanical performance of a series of parameters in fusion devices at various levels of facet deterioration. This will enable the different interventions to be matched to different patient's characteristics.

In addition, the process of proving the accuracy of the testing methods will involve conducting tests at different levels of deterioration. The results from these tests will provide a greater understanding of how facet deterioration affects the biomechanical function of the spine. This knowledge will have the potential to inform the development of other more effective treatments for the spine and the new methods developed can also be applied to other joints in the body.
 
Description Capital Equipment - motion analysis system
Amount £39,000 (GBP)
Organisation University of Leeds 
Sector Academic/University
Country United Kingdom
Start 06/2023 
 
Description MSKDamage - Image-driven damage characterisation of musculoskeletal tissues for in silico medicine
Amount £1,866,647 (GBP)
Funding ID EP/X032183/1 
Organisation Engineering and Physical Sciences Research Council (EPSRC) 
Sector Public
Country United Kingdom
Start 03/2024 
End 03/2029
 
Description Michael Beverley Innovation Fellowship
Amount £7,500 (GBP)
Organisation University of Leeds 
Sector Academic/University
Country United Kingdom
Start 08/2023 
End 07/2024
 
Description UoL - Research Culture
Amount £9,000 (GBP)
Organisation University of Leeds 
Sector Academic/University
Country United Kingdom
Start 08/2023 
End 08/2024
 
Description UoL/Research England - Enhancing Research Culture
Amount £47,000 (GBP)
Organisation University of Leeds 
Sector Academic/University
Country United Kingdom
Start 08/2023 
End 08/2024
 
Description partnership with spine LTHT clinician 
Organisation Leeds Teaching Hospitals NHS Trust
Country United Kingdom 
Sector Public 
PI Contribution provision of new research avenues
Collaborator Contribution clinical oversight of the experimental protocols
Impact new clinically-relevant specimen preparation protocols
Start Year 2021
 
Description PPI Avicenna Alliance TF 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Contribution to an international working group developing guidance for PPI for in silico medicine; co-authored white paper distributed internally to the Avicenna Alliance (an international organisation of industries, academics, regulators and policy makers working towards realising the potential of in silico medicine; > 700 members worldwide)
Year(s) Of Engagement Activity 2022,2023
 
Description Patient involvement working group 
Form Of Engagement Activity A formal working group, expert panel or dialogue
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Patients, carers and/or patient groups
Results and Impact Organisation of a patient involvement group as a workshop in a national conference. Initiated dialogue among professionals on how to work with patients for in silico medicine
Year(s) Of Engagement Activity 2022
 
Description Public Outreach (Otley 2022) 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Participation at a Science Fair (Otley Science Fair) with spine-related activities and model.
Over 100 persons, mostly children under 10, talked about joint degeneration and repair, and children had a go at being a biomedical engineer and spinal surgeon at the same time: devising an intervertebral disc repair, inserting it between vertebrae through a tiny incision and testing its mechanical strength
Year(s) Of Engagement Activity 2022