Nature-inspired bio-Syngas Technologies for Olefins Synthesis

Lead Research Organisation: University College London
Department Name: Chemical Engineering

Abstract

Environmental and economic concerns related to the excessive use of fossil fuels, together with opportunities in circular economy and carbon negative technologies are paving the way for a fundamental reorganisation of the chemical industry. Oil refineries are being redesigned to couple petrochemical processes with bio-based productions and new thermo-chemical technologies more suited for small-scale operation. In this context, the invention of new (or restructured) processes for the synthesis of renewable intermediates, such as olefins generated from biomass is of crucial importance, since these molecules are fundamental building blocks for polymers, fuels and chemical industry. In order to unlock the transition to bio-substitutes in energy and manufacturing sectors, resource efficiency, process flexibility and intensification are of critical importance. To achieve these goals, we propose to employ a Nature-Inspired Solution (NIS) methodology, as a systematic platform for innovation and to inform transformative technology. The NIS methodology will be used to design and optimise modular bio-syngas conversion methods to manufacture "green" chemical products, including bio-olefins, at a scale suitable for decentralised applications. The research will focus on the novel concept of Sorption Enhanced Olefin Synthesis (SEOS), and the integrated design and performance of key system components (Synthesis Reactor - Catalysts Configuration - Life Cycle Analysis) to provide information on the underpinning reaction mechanisms, engineering performance and system dynamics that will facilitate deployment of future bio-based manufacturing plants.

Publications

10 25 50