Processing of Smart Porous Electro-Ceramic Transducers - ProSPECT

Lead Research Organisation: University of Bath
Department Name: Mechanical Engineering

Abstract

Ferroelectrics are highly polar materials that generate electrical charge in response to a change in mechanical stress or temperature. These properties make them exceptional materials for piezoelectric pressure sensors, accelerometers, SONAR, vibration energy harvesters, and pyroelectric thermal detectors. While porosity in these materials is currently viewed as a defect, I will establish that porosity can achieve a step-change in performance to produce next generation materials for sensors, SONAR, and energy harvesting. New modelling tools will inform how the pore structure can enhance the mechanical, thermal, and dielectric properties and modify the internal electric field and domain structure to enable the design of porous ferroelectrics with properties that are specifically tailored to each application. To create ferroelectric materials with the required pore structure, new manufacturing processes based on freeze-casting will deliver porous materials, multi- functional composites, and textured crystals with unprecedented control over pore structure and properties. I will also explore new and disruptive applications that to exploit the unique properties of porous ferroelectric materials, where ferroelectric charges generated by thermal or mechanical loads will be used for hydrogen production by water splitting or remove pollutants/bacteria for water purification. My vision is to integrate the new modelling tools and manufacturing methods to pioneer the use of advanced porous ferroelectrics in addressing important high-risk and high-gain global research challenges in the areas of sensing, harvesting, hydrogen generation, water treatment, and beyond.

Publications

10 25 50