SUPER-BIO-PCM: Superior Form-Stable Biochar Encapsulated Phase Change Materials for Direct Solar Absorption

Lead Research Organisation: University of Glasgow
Department Name: School of Engineering


Advancement in the field of thermal energy storage (TES) is crucial to meet the rapidly growing energy demand. Among the available TES techniques, latent heat storage has promising applicability, and paraffins are commonly used due to their inherent technical and economic advantages. The direct employment of these materials has a long-standing bottleneck for system-level applications due to leakage above the normal melting temperature and low heat transfer performance (low thermal conductivity). This proposal addresses these challenges by developing and implementing a novel form of stable phase change material (PCM) composite encapsulated by biochars. A comprehensive investigation of the fundamental aspects of heat transfer during charging and discharging, as well as the parameters affecting the properties of form-stable PCM-Biochar composite (fs-PBC), will be carried out both numerically and experimentally. The properties of fs-PBC will be characterised and compared to those of a typical PCM. Following the successful evaluation of the basic and fundamental properties of fsPBC, this novel material will be employed in a Photovoltaic-thermal (PV/T) collector to assess its thermal output and cooling efficiency. The proposed fsPBC, once it is developed, will provide a cost-effective solution for energy storage and PV cooling, delivering wide impacts on the economy and environment. The proposed research offers innovations at both material and system levels. Therefore, once the route of preparing the novel PCM based composite is established, the same procedure can be replicated for several other applications, including lightweight high strength roof material for buildings with better thermal regulation, battery thermal management in electric vehicles, and cooling electronic devices.


10 25 50