CoolGlass: Mass producible and durable radiative cooling glass panels

Lead Research Organisation: University College London
Department Name: Electronic and Electrical Engineering

Abstract

The problem: Indoor space cooling is a fundamental means for achieving good health and wellbeing due to its direct correlation with human comfort, increased productivity levels and concomitant health benefits. Such is its impact on people's lives that meeting all 17 UN's Sustainable Development Goals rests, to a greater or lesser extent, on the timely proliferation of green cooling technologies, as was recently argued. Nonetheless, cooling has a dark side, being one of the most energy intensive and highly polluting processes associated with human activity. The statistics are staggering; the energy consumed by air-conditioners and electric fans accounts for ~20% of the total electricity used in buildings worldwide and contribute >1.2 GT of CO2 emissions/year.

The solution: In order to resolve the cooling conundrum, I am putting forward a novel radiative cooling technology. The proposed solution leverages the infinite heat capacity of the cold Universe, converting it in essence into an inexhaustible reservoir for the waste heat of the built, transport, and other manmade environments on earth. The developed products in CoolGlass will take the form of radiative cooling panels made of thin, low-iron glass sheets. The main advantages that CoolGlass technology brings about are: i) Full compatibility with industrial, mass manufacturing methods. ii) Unrivalled durability. iii) Superior cooling capacity compared with other competing radiative cooling technologies. iv) Design flexibility, and, v) excellent sustainability prospects.

Overall, CoolGlass combines zero input-energy and zero CO2-emissions (during usage period) with cost-efficacy, low-maintenance
and short payback times and constitutes a disrupting, green, space cooling solution that can significantly mitigate electricity
consumption from cooling systems.

Publications

10 25 50