Analysing Narrative Aspects of UK Preliminary Earnings Announcements and Annual Reports: Tools and Insights for Researchers and Regulators
Lead Research Organisation:
Lancaster University
Department Name: Accounting & Finance
Abstract
The quality of information provided to investors by corporate management in publicly traded companies is a matter of central importance to financial market participants. Narrative commentaries represent an increasingly significant component of financial communications. While financial narratives in the UK are shaped in part by prevailing regulations, senior management enjoys significant discretion over the content, structure and presentation of these disclosures. The informativeness of financial narrative disclosures and the way management apply their reporting discretion are key questions for academics and policymakers.
Partnering with the UK body responsible for promoting high quality corporate governance and financial reporting - the Financial Reporting Council (FRC) - this interdisciplinary project will combine expertise from accounting with state-of-the-art methods from computational linguistics to examine two key elements of financial disclosure. The first aspect is preliminary earnings announcements (PEAs), which arguably represent the most important disclosure in UK firms' annual reporting calendar. The second aspect is the annual report to shareholders, which forms the largest single recurring disclosure commitment for management.
Two opposing perspectives exist on corporate narrative disclosures. On the one hand, proponents argue that narratives provide information beyond that contained in financial data. On the other hand, opponents claim that management exploit the discretion embedded in narrative reporting to obfuscate or present a biased representation of actual performance. While extant work on UK annual report and PEA narrative disclosures provides evidence consistent with both perspectives, both the scope of the research and the generalizeability of findings is compromised because conclusions rely on manual coding methods applied to small samples.
This project will develop and use state-of-the-art computerized textual analysis methods to study the properties and usefulness of financial narratives for a comprehensive sample of UK disclosures published between 2003 and 2016. While researchers are already using these methods to study disclosures made by US companies, problems accessing digital PEAs and annual reports coupled with inconsistent document structure has hindered computerized analysis of UK financial narratives and skewed research agendas away from studying UK reporting outcomes. This project will shine much needed light on two key aspects of UK narrative reporting. The work will provide the first large sample analysis of PEAs narratives.
The project will also examine a set of contemporary policy-relevant themes relating to the content and structure of UK annual reports. Software tools and datasets from the project will also create new opportunities for the research community.
Policymakers are facing pressure to adopt evidenced-based approaches to regulation. While the FRC is committed to conducting impact and evaluation analyses, it is reliant on a relatively small team of research staff to undertake such work, much of which involves manual collection and analysis of unstructured data. The labour-intensive nature of the work inevitably yields results that are hard to generalize and constrains the scope of the FRC's work. As well as examining novel and policy-relevant research questions, this project will embed computerized text analytics methods in the FRC's formal policymaking processes. The methods will complement existing approaches by facilitating lower cost and more comprehensive assessments of regulatory changes and emerging issues in narrative reporting.
Partnering with the UK body responsible for promoting high quality corporate governance and financial reporting - the Financial Reporting Council (FRC) - this interdisciplinary project will combine expertise from accounting with state-of-the-art methods from computational linguistics to examine two key elements of financial disclosure. The first aspect is preliminary earnings announcements (PEAs), which arguably represent the most important disclosure in UK firms' annual reporting calendar. The second aspect is the annual report to shareholders, which forms the largest single recurring disclosure commitment for management.
Two opposing perspectives exist on corporate narrative disclosures. On the one hand, proponents argue that narratives provide information beyond that contained in financial data. On the other hand, opponents claim that management exploit the discretion embedded in narrative reporting to obfuscate or present a biased representation of actual performance. While extant work on UK annual report and PEA narrative disclosures provides evidence consistent with both perspectives, both the scope of the research and the generalizeability of findings is compromised because conclusions rely on manual coding methods applied to small samples.
This project will develop and use state-of-the-art computerized textual analysis methods to study the properties and usefulness of financial narratives for a comprehensive sample of UK disclosures published between 2003 and 2016. While researchers are already using these methods to study disclosures made by US companies, problems accessing digital PEAs and annual reports coupled with inconsistent document structure has hindered computerized analysis of UK financial narratives and skewed research agendas away from studying UK reporting outcomes. This project will shine much needed light on two key aspects of UK narrative reporting. The work will provide the first large sample analysis of PEAs narratives.
The project will also examine a set of contemporary policy-relevant themes relating to the content and structure of UK annual reports. Software tools and datasets from the project will also create new opportunities for the research community.
Policymakers are facing pressure to adopt evidenced-based approaches to regulation. While the FRC is committed to conducting impact and evaluation analyses, it is reliant on a relatively small team of research staff to undertake such work, much of which involves manual collection and analysis of unstructured data. The labour-intensive nature of the work inevitably yields results that are hard to generalize and constrains the scope of the FRC's work. As well as examining novel and policy-relevant research questions, this project will embed computerized text analytics methods in the FRC's formal policymaking processes. The methods will complement existing approaches by facilitating lower cost and more comprehensive assessments of regulatory changes and emerging issues in narrative reporting.
Planned Impact
Who will benefit from the work?
The project will deliver economic and societal benefits as well as contributing to academic research.
The work involves co-funded and co-produced research with the UK financial reporting regulator, the Financial Reporting Council (FRC). The work seeks to enhance policymaking in corporate governance and financial reporting by: reviewing a key unregulated aspect of corporate reporting in the form of preliminary earnings announcements (PEAs) to determine the need or otherwise for regulatory guidance; evaluating the impact of recent developments in annual report narratives; and embedding large-sample textual analysis methods in the FRC's policymaking toolkit.
Other bodies with links to financial reporting are also expected to benefit from project outputs including the UK Investor Relations Society (UK IRS) and the Institute of Chartered Accountants in England and Wales (ICAEW), the European Financial Reporting Advisory Group (EFRAG), and the International Integrated Reporting Council (IRRC).
The academic community will also benefit from the project. Large-sample empirical research on corporate narratives is skewed heavily toward the US due in part to the ease with which financial narratives can be accessed and processed automatically in that market. This project will create new resources, insights, and agendas for researchers generally and UK researchers in particular.
What form will the benefits take?
The research will enhance policymaking through two ex ante impact assessments of prevailing financial reporting practice. First, we will undertake the first systematic analysis of the properties and economic impact of PEA commentaries as a basis for evaluating the need or otherwise for the FRC to issue regulatory guidance. (PEAs are largely unregulated in the UK, creating variation in practice and scope for both informative reporting and obfuscation.) Second, we will provide large-sample evidence on emerging trends in unregulated aspects of annual report narratives as a basis for identifying both best practice and areas where regulatory guidance may be required. We also expect these findings to be of interest to other bodies involved in financial reporting including UK IRS, ICAEW, EFRAG and IIRC.
The project will also contribute to FRC policymaking activities by providing comprehensive post-implementation reviews of recent developments in annual reporting. (The FRC is currently restricted to conducting small sample manual post-implementation reviews that are costly to produce and hard to generalise.)
Coincident with this instrumental impact, the project will also deliver capacity-building impact to policymaker and academic communities. For the policymaker community, the work will embed large sample textual analysis and big data methods in the FRC's policy toolkit, empowering it to conduct comprehensive, timely, and low cost analyses of UK firms' narrative reporting practices as part of its surveillance and post-implementation review activities (where only small sample manual work is currently possible). Training and documentation to support software and methods will enable FRC colleagues to harness the potential of these resources and ensure significant legacy benefits. Datasets of financial narratives will also enhance contemporaneous and future evidence-based policymaking activities.
For the academic community, the project will build sustainable UK-focused research capacity by: developing software resources that facilitate automatic retrieval and analysis of corporate financial narratives; providing new training opportunities in textual analysis for researchers; generating datasets summarizing the properties of narrative commentaries; and stimulating UK-focused research agendas in hitherto unexplored areas such as document structure, content integration, and data presentation.
The project will deliver economic and societal benefits as well as contributing to academic research.
The work involves co-funded and co-produced research with the UK financial reporting regulator, the Financial Reporting Council (FRC). The work seeks to enhance policymaking in corporate governance and financial reporting by: reviewing a key unregulated aspect of corporate reporting in the form of preliminary earnings announcements (PEAs) to determine the need or otherwise for regulatory guidance; evaluating the impact of recent developments in annual report narratives; and embedding large-sample textual analysis methods in the FRC's policymaking toolkit.
Other bodies with links to financial reporting are also expected to benefit from project outputs including the UK Investor Relations Society (UK IRS) and the Institute of Chartered Accountants in England and Wales (ICAEW), the European Financial Reporting Advisory Group (EFRAG), and the International Integrated Reporting Council (IRRC).
The academic community will also benefit from the project. Large-sample empirical research on corporate narratives is skewed heavily toward the US due in part to the ease with which financial narratives can be accessed and processed automatically in that market. This project will create new resources, insights, and agendas for researchers generally and UK researchers in particular.
What form will the benefits take?
The research will enhance policymaking through two ex ante impact assessments of prevailing financial reporting practice. First, we will undertake the first systematic analysis of the properties and economic impact of PEA commentaries as a basis for evaluating the need or otherwise for the FRC to issue regulatory guidance. (PEAs are largely unregulated in the UK, creating variation in practice and scope for both informative reporting and obfuscation.) Second, we will provide large-sample evidence on emerging trends in unregulated aspects of annual report narratives as a basis for identifying both best practice and areas where regulatory guidance may be required. We also expect these findings to be of interest to other bodies involved in financial reporting including UK IRS, ICAEW, EFRAG and IIRC.
The project will also contribute to FRC policymaking activities by providing comprehensive post-implementation reviews of recent developments in annual reporting. (The FRC is currently restricted to conducting small sample manual post-implementation reviews that are costly to produce and hard to generalise.)
Coincident with this instrumental impact, the project will also deliver capacity-building impact to policymaker and academic communities. For the policymaker community, the work will embed large sample textual analysis and big data methods in the FRC's policy toolkit, empowering it to conduct comprehensive, timely, and low cost analyses of UK firms' narrative reporting practices as part of its surveillance and post-implementation review activities (where only small sample manual work is currently possible). Training and documentation to support software and methods will enable FRC colleagues to harness the potential of these resources and ensure significant legacy benefits. Datasets of financial narratives will also enhance contemporaneous and future evidence-based policymaking activities.
For the academic community, the project will build sustainable UK-focused research capacity by: developing software resources that facilitate automatic retrieval and analysis of corporate financial narratives; providing new training opportunities in textual analysis for researchers; generating datasets summarizing the properties of narrative commentaries; and stimulating UK-focused research agendas in hitherto unexplored areas such as document structure, content integration, and data presentation.
Organisations
- Lancaster University (Lead Research Organisation)
- Pensions and Lifetime Savings Association (Collaboration)
- RPMI Railpen (Collaboration)
- Financial Reporting Council (Collaboration)
- The Investor Relations Society (Collaboration)
- Catholic University of Portugal (Collaboration)
- Independent Anti Slavery Commissioner (Collaboration)
- Financial Conduct Authority (FCA) (Collaboration)
- INQUIRE (Collaboration)
- Financial Reporting Council FRC (Project Partner)
People |
ORCID iD |
Steven Young (Principal Investigator) | |
Paul Rayson (Co-Investigator) |
Publications
Athanasakou V
(2020)
Annual Report Narratives and the Cost of Equity Capital: U.K. Evidence of a U-shaped Relation
in European Accounting Review
Chircop J
(2022)
Capital market response to high quality annual reporting: evidence from UK annual report awards
in Accounting and Business Research
El-Haj M
(2019)
Retrieving, classifying and analysing narrative commentary in unstructured (glossy) annual reports published as PDF files
in Accounting and Business Research
El-Haj M
(2019)
In search of meaning: Lessons, resources and next steps for computational analysis of financial discourse
in Journal of Business Finance & Accounting
Lewis C
(2019)
Fad or future? Automated analysis of financial text and its implications for corporate reporting
in Accounting and Business Research
Litvak M
(2019)
Multilingual Text Analysis - Challenges, Models, and Approaches
Steven Young
(2022)
Modern Slavery Reporting Practices in the UK
Tsileponis N
(2020)
The monitoring role of the financial press around corporate announcements
in Accounting and Business Research
Tsileponis N
(2020)
Do corporate press releases drive media coverage?
in The British Accounting Review
Description | A large fraction of information published by companies to inform stakeholders about economic and social impact takes the form of qualitative (narrative) information. Researchers (and to a large degree financial market participants) have overlooked such disclosures because they are hard to process other than via intensive manual reading. The volume of narrative information that large companies now disclose makes sole reliance on manual analysis unfeasible. This project aims to provide insights in the properties and economic consequences of companies' qualitative disclosures using computerized methods to read and process the information. A growing body of work has begun to explore research questions using qualitative disclosures made by companies listed on US stock markets. Access to data and ease of automated processing make the US a natural venue to undertake such research. Comparable research in other (non-US) markets is largely non-existent. The lack of evidence for markets such as the UK is important because reporting structures and regulations differ substantially from those prevailing in the US, meaning that it is an open question whether extant insights are transferrable to a UK setting. Further, the nature of corporate reporting in the UK provides opportunities to examine novel questions and extend our broad understanding of qualitative financial reporting. Significant technical barriers prevent researchers from conducting work on UK financial narratives: corporate disclosures are hard to collect on a large sample basis and the file type (often PDF) limits the scope for harvesting and processing text in a structured manner. The same barriers prevent regulators and industry professionals from analysing such data on a large scale. Our project develops resources to facilitate analysis of UK corporate narrative disclosures on a large scale. We develop new software resources and datasets to support academic research in the area. We also work closely with policymakers and financial market participants to assist with the analysis of qualitative disclosures and provide relevant insights on the properties and usefulness of financial narratives. Non-academic users with whom we have worked during the project include the Financial Reporting Council (UK financial reporting regulator), the Financial Conduct Authority (UK financial market regulator), the Investor Relations Society (industry body representing IR professionals and promoting high quality corporate communication), RPMI (pension fund manager), and INQUIRE UK (body representing quantitative investment analysts working the UK). The primary findings and contributions (F&C) of our research are summarised as follows: F&C1. We analyse the narrative component of UK firms' preliminary earnings announcements (PEAs) using manual scoring methods and confirm that disclosures are characterised by the presence of significant self-attribution bias: management are more likely to take credit for positive results while attributing poor performance to external factors beyond their control. F&C2. We test whether these insights resulting from careful manual analysis are reproducible using computerized scoring methods. We compare a range of automated scoring techniques from simple wordlists used in prior research to more sophisticated machine learning classifiers. We find that exclusive reliance on automated scoring methods widely applied by accounting and finance researchers replicate manual analysis with significant measurement error. While automated methods do a reasonable job of detecting performance tone and identifying the type of attribution (internal versus external), none of the approaches we use are able to detect the presence of an attribution. Our result highlights both the opportunities and limitations associated with automated text scoring. We provide the first evidence of which we are aware that illustrates the scale of the measurement error problem resulting from the application of popular automated scoring methods. We conclude that in certain situations, manual content analysis remains an important research tool despite the growth in large sample automated methods. We view manual and computerised methods as complements rather than substitutes, and we propose a new strategy for analysis of qualitative disclosures that combines elements of manual scoring (to ensure precision) and automated scoring (to reduce research costs). F&C3. We compare the content of narrative disclosures in firms' PEAs with disclosures made in the corresponding annual report (typically published 1-3 months later). Comparing content in these two disclosures is important because: (a) PEAs typically contain new (price sensitive) information whereas annual reports are viewed as providing a comprehensive review of information reported during the year via more timely sources; (b) surprisingly, disclosure regulations focus largely on the annual report, with the content of PEAs being largely unregulated. This situation creates an opportunity for management to report strategically by emphasising good news in the PEA (to increase share price) and deferring less positive interpretations of performance to the annual report in the hope it is overlooked. This is a research question that interests academics and policymakers alike. We find evidence suggesting that PEA narratives are more positive than their annual report counterparts despite discussing the same underlying economic performance. We also find some evidence of differences in content between the two narratives. Our findings provide the first evidence that management may use their reporting discretion to create a more favourable impression of performance in the PEA because this communication channel is more likely to influence share price. Results informed internal debate within the Financial Reporting Council on shape of guidance for PEA preparers. F&C4. We also study the interplay between the tone and informativeness of narrative commentary in corporate press releases and the financial media. We find that the financial media serves an important external monitoring role by interpreting the tone of commentary in corporate announcements, which in turn moderates the impact of such commentary on market participants. We find that financial journalists moderate the tone of management commentary for both positive and negative news. The effect is much more pronounced however for positively toned corporate news, which is consistent with the view that management has incentives to overstate performance and recognising this fact, sceptical financial journalists discount excessively positive tone accordingly. Further, we find that journalist-adjusted tone provides incremental information to investors above and beyond the disclosures provided by management. Financial journalists, our results suggest, provide a useful filtering role on management optimism. F&C5. We provide evidence on the properties of high quality annual reporting. Prior research uses a set of simple linguistic features such as readability and tone to measure the quality of annual report narratives. These measures have been criticised in the literature on several grounds. First, because they do not capture meaning in narrative disclosures, these measures are unlikely to provide deep insights into reporting quality. Second, the metrics do not align with practitioners' and policymakers' views on the factors that determine high quality annual reporting. We use a combination of machine learning methods and techniques from corpus linguistics to compare the properties of UK annual reports that win awards for quality with a matched sample of non-winning reports. We use machine learning techniques to identify core themes in the reports, while corpus linguistics methods are used to refine these themes to better reflect meaning in a financial reporting context. We then compare winning and non-winning reports to identify themes that distinguish the two groups statistically. We group themes into two broad categories: content and writing style. Content relates to the topics that management discuss such as strategy, business model, growth, etc. Writing style relates to the way information is presented and its effect on cognitive processing, and includes dimensions such as the amount of cross-referencing, use of grammar, use of negation, etc. Results reveal that award-winning reports are associated with more commentary on strategy and a higher incidence of writing styles that prior research links to better cognitive processing. Both our content and writing style metrics align with notions of reporting quality emphasised by accounting practitioners and policymakers. Tests reveal that our suite of content and writing style features are better than traditional metrics such as readability and tone at distinguishing award-winning reports from non-award-winning reports. Out-of-sample tests indicate that our suite of features can predict future award winners with a high degree of accuracy (> 75%). Ours is the first study of which we are aware to examine the linguistic properties of award-winning annual reports and to develop a model for measuring the quality of annual report discourse. F&C6. We study the properties and impact of annual report commentary on strategy and value creation. Financial reporting regulators are placing increasing emphasis on the need for management do a better job of articulating their approach to creating and maintaining value for their external stakeholders. The UK is leading the way in this area with regulations introduced in 2010 and 2013 that require large companies to disclose information on strategy and business model in their annual report. Nevertheless, it remains an open question just how diligently management have responded to these reporting requirements and whether external stakeholders find the new disclosures useful. We use a range of methods from computational linguistics to study strategy-related disclosures. We find that, as expected, the number of companies discussing strategy in their annual report increased in response to requirements introduced in 2010 and 2014. We use topic modelling methods from computational linguistics to shed light on the themes that management discuss in their strategy discourse. Results reveal that the topics management discuss align closely with popular strategy frameworks that focus on areas such as external competitive environment (Porter's 5 forces) and internal comparative advantage (value chain analysis and resource-based view). Our results cast doubt on the view that strategy discourse comprises boilerplate platitudes. Our evidence also reveals that requirements for management to discuss strategy led to an increase the number of topics discussed, consistent with the view that the regulatory changes succeeded in improving the scope and extent of strategy-related discourse. We also show that this increase in disclosure improved the quality of companies' information environment by reducing the level of information asymmetry with stock market investors. We also find that requiring management to explain their value creation strategy reduces their focus on short-term earnings performance and increases discussion of non-earnings-based performance measures that correlate more closely with long-term value creation (e.g., customer satisfaction, R&D investment, operating efficiency, employee well-being, etc.). Our analysis supports the view that requiring management to articulate their long-term strategy can help reduce the focus on short-term results. On the other hand, further (ongoing) analysis suggests that the quality of mandated strategy-related discourse varies substantially across companies, with a material fraction of entities adopting a compliance approach to disclosure that involves providing bland, generic statements rather than detailed and rigorous analysis. F&C7. Working in partnership with the Financial Reporting Council (FRC) and the Financial Conduct Authority (FCA), we are developing statistical models to predict the risk of financial misreporting. The costs of accounting scandals and unexpected corporate failures to investors and society more broadly are well known (e.g., Carillion). Financial market regulators monitor reporting quality proactively in an effort identify poor reporting practice and promote the liquidity and efficiency of financial markets. The FRC and FCA rely on manual scrutiny of reports to identify suspicious cases, along with referrals from stakeholders such as whistle-blowers and the media. The high cost of manual scrutiny means that monitoring activities are partial and limited to high-risk areas. The inevitable consequence of this approach is that some accounting scandals go undetected until it is too late to intervene and limit losses. Using proprietary data from the FCA and FRC, we have developed a prototype statistical model to predict the probability of misreporting based on the content of published annual reports. We use a combination of quantitative and qualitative data in our model. Our quantitative features comprise common financial reporting ratios that prior research shows can predict financial fraud and failure. Our qualitative features are derived from machine learning algorithms that detect the distinctive properties of financial discourse in the presence of misreporting. Results reveal that our model can predict financial misreporting out-of-sample and that the majority of predictive power comes from the qualitative features. We are currently working with the FCA to implement the model as an automated screening tool to improve monitoring efficiency by directing scarce manual resources to reports where the risk of financial wrongdoing is highest. F&C8. We provide evidence on the link between the quality of UK annual report narrative disclosures and companies' cost of equity capital. Prior research predicts (and finds) a negative linear relation between disclosure quality and cost of capital: higher quality disclosures reduce information asymmetry and undiversifiable risk, which in turn feeds through to a lower cost of capital. Contrary to prior research, we hypothesize and test for a U-shaped relation between the cost of equity capital and the level of disclosure in annual report narratives. Our measure of annual report disclosure quality is a disclosure index constructed using a computerized method based on word counts. Consistent with our prediction, we find that the cost of equity capital is negatively associated with annual report disclosure at low levels of disclosure, while at high disclosure levels cost of capital increases with the provision of even more narrative commentary (consistent with uninformative clutter increasing processing costs and potentially reflecting management obfuscation). Additional analyses reveal that regulatory corporate reporting initiatives such as the UK Corporate Governance Code (2010) help to move disclosure levels toward the optimal level. Our analysis helps shed new light on the role of annual report disclosures (and the regulation thereof) in shaping companies' information environment. F&C9. A general insight from our work is that accounting and finance research lags well behind best practice methods in computational linguistics. Large sample textual analysis is a relatively recent phenomenon and this early stage work is characterised by a reliance on naïve approaches to quantifying narrative content. Accounting and finance researchers appear slow to adopt cutting-edge methods from natural language processing and corpus linguistics, with the result that extant conclusions may be overstated. We call for researchers in accounting and finance to abandon their reliance on naïve strategies for measuring the content of financial narratives and look to research in computing and linguistics for guidance on ways to improve the robustness and rigour of their work. F&C10. A lack of data and resources hinders research on UK corporate narratives. Narrative commentary in annual reports and corporate press releases is hard to extract in a structured manner; and the techniques for processing retrieved text require computing skills that most accounting research do not possess. We provide a suite of software tools, datasets and other resources to support academic and non-commercial research on UK financial narratives. F&C11. Recent work commissioned by the FRC has highlighted significant disclosure deficiencies by UK listed firms in the area of modern slavery reporting. Our research has led to the FRC identifying this area as a concern in their 2021 Annual Review of Corporate Governance Reporting. The work has attracted the attention of the Independent Anti-Slavery Commissioner, who is now working on a joint report with ourselves and the FRC. The main outputs (O) of the project consist of: O1. A set of academic publications and working papers in preparation for submission to academic peer-reviewed journals. To date, the project has generated: six publications in ABS 3* journals (relating to F&C4, F&C9 and F&C10); one revise and resubmit at an ABS 4* journal (relating to F&C6); and four working papers scheduled for submission over the next 12 months (relating to F&C1, F&C2 and F&C5); O2. Software, datasets, and methods to support research on UK corporate narratives (F&C10). Resources include: a software app to facilitate structured extraction of text from UK annual reports published as PDF files; a software app to facilitate extraction of management commentary from PEAs; annual report corpora for various key components including chair's letter to shareholders, management commentary, corporate governance statements, remuneration reports, commentary on environmental, social and governance factors, and risk reports; a dataset of disclosure scores for over 25,000 UK annual reports published between 2003 and 2018; a dataset of disclosure scores for over 10,000 PEAs released between 2007 and 2018; resources to clean raw text to support further analysis (e.g., removing redundant punctuation and special characters, identifying sentences, stemming, removing infrequent words, dealing with inconsistent use of hyphens, Named Entity Recognition); and machine learning resources to measure tone and attribution type. O3. Improvements in UK research capacity through training. We have delivered two hands-on training workshops on textual analysis research in accounting and finance (70 attendees). Working in partnership with INQUIRE UK, we designed and delivered a five-session (15-hour) training programme in textual analysis for 24 professional quantitative research analysts from leading global financial institutions including BlackRock, UBS, BofA Securities, Fidelity, Jupiter Asset Management, FTSE and MSCI (Nov-Dec 2020). We are currently in discussions with INQUIRE and a professional training firm about developing a package of training materials aimed at a wider financial markets audience. Finally, working in partnership with Universidade Católica Portuguesa (Porto), we designed and delivered 4-day introductory (online) workshop on python programming for 25 postgraduate research students and early career researchers (July 2020). The workshop was a success and we plan to repeat the event in summer 2021. O4. Contributions to financial reporting policy. Our work with colleagues at the FRC has informed policy and practice in several areas including earnings announcements (F&C3), reporting of alternative performance measures, and strategy-related management commentary (F&C6). We will continue working with the FRC our datasets and textual analysis resources within their decision-making processes, with a particular focus on supporting horizon scanning activities and post-implementation reviews. O5. A prototype model of financial misreporting to support market-monitoring activities by the FCA(F&C7). Preliminary results demonstrate that the model has the ability to predict misreporting cases out-of-sample up to two-years before the start of the violation period. We are continuing to work with the FCA to embed the model within their normal market monitoring processes. O6. A model of annual reporting quality (F&C5) that the Investor Relations (IR) Society are using to inform their annual awards process. The IR Society use the annual awards process to promote best practice in annual reporting and improve the overall quality of corporate communication to investors and other stakeholders. Our statistical model is enabling the IR Society to scan a larger number of reports proactively to find evidence of best practice. O7. Our research on methods for extracting text from UK annual reports (F&C10) has informed internal development by Fidelity International of tools for analysing financial narratives in their global portfolios. Fidelity is using these resources to support its financial analysis and portfolio allocation decisions. Our contribution to Fidelity's work is acknowledged in a letter of support that forms part of an impact case for the forthcoming Research Excellence Framework. We are also continuing to collaborate with RPMI to develop text-based investment signals from corporate communications. We currently have two PhD interns working closely with members of their Quantitative Analysis team. O8. Our work on modern slavery reporting has led to the FRC highlighting lack of transparency as a significant area of concern. |
Exploitation Route | We see several avenues in which the results and outcomes of this project will evolve and impact users communities: 1. We will continue to maintain and update our annual report and earnings announcement databases to support academic research UK financial narratives; 2. We are continuing to work with the FRC to embed textual analysis methods within their policymaking activities; 3. We are continuing to work with the FCA to refine and implement our model for predicting financial misreporting, with the aim of improving the efficiency of their market monitoring activities; 4. We will continue working closely with the IR Society to identify annual reports that represent exemplars of best practice; 5. We are working with RPMI Railpen to develop methods for forecasting future returns using financial narratives. We organised a nine-month internship for one of our project research assistants (Ferdinand Bratek), ending September 2020. This was followed by a 12-month research partnership internship for one of our PhD students (Gitae Park), starting November 2020. We continue to work closely with the team at RPMI via Gitae to develop new text-based models to support financial analysis and asset allocation decisions. 6. We are working with the FRC and the Independent Anti-Slavery Commissioner (IASC) to publish a report documenting deficiencies in current reporting practices by UK firms listed on the London Stock Exchange. The aim of the report is to trigger a discussion on how companies can improve reporting in this area and limit the impact of modern slavery risk for their business and society more generally |
Sectors | Digital/Communication/Information Technologies (including Software) Financial Services and Management Consultancy |
URL | http://ucrel.lancs.ac.uk/cfie/ |
Description | Software, datasets, and methods developed and disseminated to the academic research community are supporting new research studies on the properties and economic impact of financial narratives. Our work with colleagues at the Financial Reporting Council (FRC) has informed policy and practice in several areas including: evidence on the properties of narrative commentary in earnings announcements that has been cited in committee meetings to evaluate the need for regulation; an analysis of reporting trends for alternative performance measures (APM) that signalled a general improvement in reporting but also highlighted systematic weaknesses where further guidance is required; company-specific evidence on compliance with reporting guidelines for APMs that has been used by the FRC to target companies that persistently fail to follow reporting guidelines; and evidence on the properties and impact of strategy-related management commentary that has informed thinking at the FRC Lab. We have developed a prototype model of financial misreporting to support market-monitoring activities by the Financial Conduct Authority (FCA) and FRC. Preliminary results demonstrate that the model has the ability to predict misreporting cases out-of-sample up to two-years before the start of the violation period. We are working closely with the FCA to embed the model within their normal market monitoring processes. A testimonial letter from the Director of Market Oversight at the FCA confirms that the work has had a significant impact on their thinking about monitoring company disclosures and identifying companies for closer inspection. The FCA has established a team to build and operationalise a process to screen reports and identify candidates for further investigation A model of annual reporting quality that the Investor Relations (IR) Society are using to inform their annual awards process. The IR Society use the annual awards process to promote best practice in annual reporting and improve the overall quality of corporate communication to investors and other stakeholders. Our statistical model is enabling the IR Society to scan a larger number of reports proactively to find evidence of best practice. A testimonial letter from the IR Society's CEO confirms that the research is transforming how the organisation approaches the task of identifying superior annual reporting. Our research on methods for extracting text from UK annual reports has informed development by Fidelity International of in-house tools for analysing financial narratives in their global portfolios. Fidelity is using these resources to support its financial analysis and portfolio allocation decisions. Our contribution to Fidelity's work is acknowledged in a letter of support. We have worked with the Pension and Lifetime Savings Association (PLSA) to evaluate FTSE-100 companies' workforce policies and reporting. The PLSA represents 1,300 pension schemes with GBP1 trillion in assets under management. Our final report for the PLSA highlights deficiencies in current reporting practices. The report was the centrepiece of a PLSA stakeholder engagement event and the conclusions formed a central pillar of the PLSA response to the FRC Consultation on a revised UK Corporate Governance Code. The quantitative analysis team at RPMI Railpen is also using insights from our research. RPMI is responsible for investing circa GBP30 billion on behalf of the Railways Pension Scheme's 350,000 members (one of the UK's largest and longest established pension funds). The work involves modelling topics and analysing management commentary to create text-based investment signals. RPMI's Investment Director (Alternative Risk Premia) confirms in a letter of support that our insights and test resources are informing development work in a material way. Finally, the project is also influencing the investment community through training. We have collaborated with INQUIRE UK to develop and deliver a training programme (five sessions; 15 hours) on textual analysis in financial markets to investment professionals from leading financial institutions (BlackRock, UBS, BofA Securities, Fidelity, Jupiter Asset Management, FTSE and MSCI). Following the success of the training programme, we are in discussions with INQUIRE UK and one of the UK's largest financial training providers on ways to deliver the training to a broader financial markets audience. The examples of impact summarized above form the basis for one of only 10 Impact Case Studies selected by Lancaster University Management School for inclusion in its REF2021 submission. |
First Year Of Impact | 2018 |
Sector | Financial Services, and Management Consultancy,Other |
Impact Types | Economic Policy & public services |
Description | Enhancing the quality of disclosures on alternative performance measures |
Geographic Reach | National |
Policy Influence Type | Citation in systematic reviews |
Impact | Our evidence was commissioned by the Financial Reporting Council (FRC) to inform practice on reporting alternative performance measures (APMs) and provide input on whether further regulatory guidance in the area was required. Our analysis indicates that although the transparency with with APMs has increased following guidance issued by the FRC in 2017, problem areas still remain. Our analysis also highlighted specific with particularly opaque reporting practices that the FRC compliance team subsequently contacted directly to request improvements in reporting quality. |
Description | Analysis of modern slavery reporting in conjunction with Independent Anti-slavery Commissioner (IASC) |
Amount | £2,250 (GBP) |
Funding ID | FRC2021-087 (extension) |
Organisation | Financial Reporting Council |
Sector | Public |
Country | United Kingdom |
Start | 01/2022 |
End | 03/2022 |
Description | Comissioned research project |
Amount | £31,200 (GBP) |
Organisation | Financial Conduct Authority (FCA) |
Sector | Public |
Country | United Kingdom |
Start | 03/2018 |
End | 08/2018 |
Description | FRC2023-0131: Analysing trends in annual report language and content |
Amount | £37,950 (GBP) |
Funding ID | FRC2023-0131 |
Organisation | Financial Reporting Council |
Sector | Public |
Country | United Kingdom |
Start | 08/2023 |
End | 03/2024 |
Description | Research mini-project' on Modern Slavery reporting (FRC2021-087) |
Amount | £5,750 (GBP) |
Funding ID | FRC2021-087 |
Organisation | Financial Reporting Council |
Sector | Public |
Country | United Kingdom |
Start | 05/2021 |
End | 03/2022 |
Title | Python module for machine learning classification of performance sentences in earnings announcements |
Description | Use of machine learning classifiers to quantify content in financial discourse is still in its infancy in the mainstream accounting and finance literature. The techniques are not well understood and researchers face high set-up costs due to the technical knowledge and programming skills required for implementing machine learning classifiers. Extant research is limited to using Naïve Bayes classifiers and the small set of studies that apply these techniques do not make their code and training data available publicly. This lack of transparency hampers progress and reduces replicability. We use of suite of supervised machine learning algorithms including Naïve Bayes, random forest, support vector machines, and a neural network to measure linguistic properties of management commentary provided in firms' preliminary earnings announcements. We measure the following three features of management performance-related commentary: tone (positive versus negative), the presence of at least one attribution by management explaining the reasons for reported performance, and the type of the attribution (i.e., relating to internal factors such as strategy, cost cutting, product quality etc. versus external factors such as macroeconomic conditions, consumer behaviour, extreme weather, etc.). Our training sample comprises a large set of manually annotated sentences for firms' earning announcements. We develop python code to train our classifiers and also to apply the resulting models out-of-sample. We provide the python code along with our training dataset to help researchers classify tone, attribution and attribution type on other datasets, and to refine our classifiers by adding additional features. The python code and annotated dataset are provided with step-by-step guidelines to help researchers implement and tweak our machine learning classifiers. As far as we are aware, this is first resource of this type to be developed and disseminated to accounting and finance researchers. |
Type Of Material | Improvements to research infrastructure |
Year Produced | 2020 |
Provided To Others? | Yes |
Impact | No data available as yet |
URL | https://github.com/apmoore1/pea_classification |
Title | Annual Reports Key Sections Corpora 2003 to 2017 |
Description | UK Annual Reports Key Sections Plain text content extracted from an initial sample of 31,464 annual reports published between January 2002 and December 2017 by firms listed on the London Stock Exchange (LSE). Annual reports provided as PDF files are processed using the CFIE-FRSE tool downloadable from https://github.com/drelhaj/CFIE-FRSE and described in the companion paper available at http://ssrn.com/abstract=2803275. The tool processed 26,284 reports from the initial sample (83.5%). The final sample includes reports published by financial and non-financial firms listed on either the LSE Main Market or the Alternative Investment Market (AIM). The document table of contents (TOC) forms the basis of extraction for 15,883 reports (approximately 60%); pre-existing document bookmarks are used to process the remaining 10,401 reports. The CFIE-FRSE tool partitions annual reports into the "front-end" narratives component and the "back-end" financials component (including the auditor's report, mandatory financial statements and associated footnotes, and miscellaneous disclosures). We further partition the narratives component into a set of commonly occurring annual report sections that feature prominently in prior research. These narrative subsections (together with the auditor's report) are numbered 1-12 and described in more detail in the following table. Text extracts are provided by report calendar year in separate files of one-million words for each core section 1-12. All extracted content is provided for the pooled set of reports processed using TOC (N = 15,883) to ensure classification consistency across reports. |
Type Of Material | Database/Collection of data |
Year Produced | 2019 |
Provided To Others? | Yes |
Impact | None to date |
Title | UK annual report narratives dataset: CFIE-FRSE May 2019 |
Description | This file contains a dataset of summary textual features for a large sample of UK annual report narratives published over the period 2002-2017, and extracted and processed using the CFIE-FRSE app described in El-Haj et al. (2019), Retrieving, Classifying and Analysing Narrative Commentary in Unstructured (Glossy) Annual Reports Published as PDF Files Accounting and Business Research (DOI/MS ID: 10.1080/00014788.2019.1609346 /). Data are provided in three file formats: csv, SAS and Stata. Details of the sampling procedure, variable definitions and method for matching to Thomson Reuters Datastream are also provided. |
Type Of Material | Database/Collection of data |
Year Produced | 2019 |
Provided To Others? | Yes |
Impact | Data being used widely within the academic community |
URL | http://ucrel.lancs.ac.uk/cfie/ |
Description | Detecting and Disrupting Misleading Statements |
Organisation | Financial Conduct Authority (FCA) |
Country | United Kingdom |
Sector | Public |
PI Contribution | Confidential |
Collaborator Contribution | Confidential |
Impact | None to date |
Start Year | 2017 |
Description | Evaluating workforce policies and the transparency of corporate reporting in this area |
Organisation | Pensions and Lifetime Savings Association |
Country | United Kingdom |
Sector | Private |
PI Contribution | Data collect, data analysis, and production of a final report. The team also presented results at a PLSA-organised seminar with key stakeholders. |
Collaborator Contribution | A proprietary toolkit for scoring workforce reporting by large UK corporates. |
Impact | Young, S., Rawsthorne, S., Hildyard, L. (2017). Hidden talent: What do companies' annual reports tell us about their workers? Pensions and Life Savings Association. The report highlights deficiencies in current reporting practices. The report was the centrepiece of a PLSA stakeholder engagement event (28 September 2018) and was cited widely in the business press. Conclusions formed a central pillar of the PLSA response to the FRC Consultation on a revised UK Corporate Governance Code |
Start Year | 2017 |
Description | IR Society Annual Awards for corporate reporting in the UK |
Organisation | The Investor Relations Society |
Country | United Kingdom |
Sector | Private |
PI Contribution | Software and datasets developed by the research team are a key input into the IR Society's Annual Awards celebrating best practice in corporate reporting. The research team scores reports shortlisted by the IR Society for their awards and these scores are combined with qualitative feedback from an expert panel to determine the final Annual Award winners. The scoring algorithm is proprietary information. Work with the IR Society formed part of a REF2021 Impact Case Study submitted by Lancaster University Management School. |
Collaborator Contribution | The IR Society Annual Awards event provides a mechanism for engaging with non-academic audiences generally and policy makers in particular. The IR Society Awards are supported by the Financial Reporting Council, with who we also work. The CEO of the IR Society (Laura Hayter) provided a letter of support for the REF2021 Impact Case Study. |
Impact | Annual Award rankings for years 2017-2022. Details of the 2022 winners are available at: https://irsocietyawards.org.uk/ |
Start Year | 2017 |
Description | Identifying text-based investment signals with RPMI Railpen |
Organisation | RPMI Railpen |
Country | United Kingdom |
Sector | Private |
PI Contribution | The work (which is subject to a confidentiality agreement) involves modelling topics and analysing management commentary to create text-based investment signals. The work is being undertaken by a PhD student at Lancaster whose research aligns closely with this project. |
Collaborator Contribution | RPMI provide access to data, high performance computing facilities, and NLP expertise. They have also provided computer hardware during lockdown to support remote working. |
Impact | A number of topic-based signals that have potential to predict future returns. |
Start Year | 2019 |
Description | Modern Slavery Reporting Practices in the UK |
Organisation | Financial Reporting Council |
Country | United Kingdom |
Sector | Public |
PI Contribution | Analyzed reporting practices for 100 companies listed on the London Stock Exchange and drafted a final report for publication (published 25 April) . We analyzed disclosures in modern slavery statements and annual reports published in 2021. We designed a disclosure scoring template comprising 90 individual aspects of reporting practice. The final report was prepared jointly with colleagues from the FRC and IASC. |
Collaborator Contribution | Section 54 of the UK Modern Slavery Act of 2015 requires businesses with a turnover of £36 million or more to write an annual statement, setting out the steps that they are taking to address the risk of slavery in their operations and supply chains. Corporate response has been uneven over the past few years. This ground-breaking collaboration between Lancaster University, the Financial Reporting Council and the IASC sets out to explore how businesses are not only reporting on modern slavery, but the extent to which they are measuring the impact of their initiatives and interventions. Analysing the modern slavery statements and also the annual reports of 100 major companies, we find a disturbing disconnection between the two reporting activities. This suggests that modern slavery considerations are still not a mainstream concern for many boardrooms. |
Impact | Young, S. and Gad, M. (2022). Modern Slavery Reporting Practices in the UK: Evidence from Modern Slavery Statements and Annual Reports. Financial Reporting Council, London. |
Start Year | 2021 |
Description | Modern Slavery Reporting Practices in the UK |
Organisation | Independent Anti Slavery Commissioner |
Country | United Kingdom |
Sector | Public |
PI Contribution | Analyzed reporting practices for 100 companies listed on the London Stock Exchange and drafted a final report for publication (published 25 April) . We analyzed disclosures in modern slavery statements and annual reports published in 2021. We designed a disclosure scoring template comprising 90 individual aspects of reporting practice. The final report was prepared jointly with colleagues from the FRC and IASC. |
Collaborator Contribution | Section 54 of the UK Modern Slavery Act of 2015 requires businesses with a turnover of £36 million or more to write an annual statement, setting out the steps that they are taking to address the risk of slavery in their operations and supply chains. Corporate response has been uneven over the past few years. This ground-breaking collaboration between Lancaster University, the Financial Reporting Council and the IASC sets out to explore how businesses are not only reporting on modern slavery, but the extent to which they are measuring the impact of their initiatives and interventions. Analysing the modern slavery statements and also the annual reports of 100 major companies, we find a disturbing disconnection between the two reporting activities. This suggests that modern slavery considerations are still not a mainstream concern for many boardrooms. |
Impact | Young, S. and Gad, M. (2022). Modern Slavery Reporting Practices in the UK: Evidence from Modern Slavery Statements and Annual Reports. Financial Reporting Council, London. |
Start Year | 2021 |
Description | Narrative Reporting in Preliminary Earnings Announcements |
Organisation | Financial Reporting Council |
Country | United Kingdom |
Sector | Public |
PI Contribution | The research team are undertaking empirical analysis of a large sample of UK preliminary earnings announcements (PEAs) over the period 2008-2017. The work involves developing algorithms to extract and analyse narrative commentary from PEAs, and to develop software tools for use by colleagues at the Financial Reporting Council (FRC). |
Collaborator Contribution | The FRC is keen to provide evidence on a range of issues related to reporting financial performance in general, and performance reporting in PEAs specifically. FRC colleagues are working with the research team to identify research questions and develop research designs to address questions of interest. FRC colleagues also provide feedback on early stage results and help to disseminate research findings within the financial reporting community (through conferences and references in FRC publications). |
Impact | None to date |
Start Year | 2017 |
Description | Natural language processing (NLP) workshop delivered in conjunction with INQUIRE UK (http://www.inquire.org.uk/). |
Organisation | INQUIRE |
Sector | Charity/Non Profit |
PI Contribution | Bringing an understanding of NLP methods to investment practitioners interested in using textual analysis as part of their investment strategy. The programme is designed and delivered by Young (Lancaster University) in London at Lancaster University premises (The Work Foundation) |
Collaborator Contribution | The programme is designed to introduce participants to the key steps of textual analysis, from extraction and preprocessing through to common machine learning methods and their applications. INQUIRE UK are responsible for marketing, registration and all other administrative activities, and provide a travel and subsistence budget for Young |
Impact | Ongoing |
Start Year | 2020 |
Description | Python training workshop |
Organisation | Catholic University of Portugal |
Department | Catolica Oporto Business School |
Country | Portugal |
Sector | Academic/University |
PI Contribution | 3-day introductory workshop to python programming delivered at Universidade Católica Portuguesa in partnership with Lancaster University Management School. Programme design and teaching is co-delivered by Young (Lancaster) |
Collaborator Contribution | 3-day introductory workshop to python programming delivered at Universidade Católica Portuguesa in partnership with Lancaster University Management School. Programme design and teaching is co-delivered by Alves (Universidade Católica Portuguesa). Programme delivered at Universidade Católica Portuguesa and all administrative support provided by Universidade Católica Portuguesa. |
Impact | Ongoing |
Start Year | 2020 |
Description | Research internship with RPMI |
Organisation | RPMI Railpen |
Country | United Kingdom |
Sector | Private |
PI Contribution | I have provided three students (two PhD and one MSc) with expertise in natural language processing to support RPMI's work (via research internships) to develop investment signals using unstructured data in text format. |
Collaborator Contribution | RPMI has provided three paid internship positions in their quantitative analysis team, along with access to data and state-of-the-art IT equipment for remote working. |
Impact | The work has led to the development of internal expertise in natural language processing and methods for identify investment signals that are subject to a confidentiality agreement. Part of the work from this collaboration has contributed to a REF2021 Impact Case Study |
Start Year | 2020 |
Title | CFIE Final Report Structure Extractor |
Description | The tool extracts text from UK annual reports published as PDF files by firms listed on the London Stock Exchange. The current version (2.0) of the tool is an update of a beta version previously available at https://drelhaj.github.io/CFIE-FRSE/. The tool retains the structure of the disclosures provided in the PDF annual report. The tool also classifies sections into generic categories to facilitate temporal and cross-sectional comparisons |
Type Of Technology | Webtool/Application |
Year Produced | 2019 |
Open Source License? | Yes |
Impact | The previous version of the tool is being used widely by academic researchers. The new version of the tool has been used by the research team to support collaborative research with the Financial Reporting Council to explore disclosure of alternative performance measures. |
URL | https://github.com/drelhaj/CFIE-FRSE-2019-Runnable |
Description | 2019 Summer Program in Accounting Research (SPAR) Doctoral Program, Current Issues in Empirical Financial Reporting Research |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | 4 × 75-minute sessions introducing students to methods and pitfalls of textual analysis in accounting research. Themes of the four sessions were as follows: 1. Overview of textual analysis in accounting, Tuesday 30 July 2019, 14.00-15.15 2. Bag-of-words methods, Tuesday 30 July 2019, 15.45-17.00 3. Introduction to natural language processing, Wednesday, 31 July 2019, 13.00-14.15 4. Introduction to corpus linguistics methods, Wednesday, 31 July 2019, 14.45-16.00 |
Year(s) Of Engagement Activity | 2019 |
URL | https://www.whu.edu/fakultaet-forschung/finance-accounting-group/internationale-rechnungslegung/spar... |
Description | 2nd Annual European Quantitative and Macro Investment Conference, hosted by Wolfe Research |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | The one-day conference featured: • How to best harness alpha from the latest alternative and unstructured Big Data sources, for both stock selection and global macro forecast • How to take advantage of machine learning and artificial intelligence to identify market anomalies and investment opportunities • How fundamental/discretionary PMs/analysts can take advantage of alternative data and advanced analytics in their investment process • Pragmatic and practical applications from premier investment management firms and asset owners • Demonstrations from data vendors providing the most unique and interesting data contents • Great networking opportunities for portfolio managers, research analysts, asset owners, and academic researchers The programme for the conference was: 8.30 - 9:15am: A Credit-Based Theory of the Currency Risk Premium Pasquale Della Corte, Associate Professor of Finance, Imperial College London 9:15 - 10:30am Best Short Dr. Robert Kosowski, Associate Professor of Finance, Imperial College London - School of Business 10:30 - 11:15pm Systematic Incorporation of ESG/SRI into the Investment Process Panel discussion 11:30 - 12: 15pm Large, Global Asset Management Firms and the Credit Default Swap Market Giovanni Calice, Senior Lecturer, Loughborough University 1:15 - 2:00pm Global REITs and Property Stock Selection Models Yin Luo, Quantitative Analysis, Economics and Strategy, and Vice Chairman - Wolfe Research 2:00 - 2:45pm Learning Tone and Attribution for Financial Text Mining Steven Young, Professor of Accounting, Lancaster University Management School 2:45 - 3:30pm How Active Managers Can Best Utilize Alternative Data and Quantitative Techniques Panel discussion 3:45 - 4:30pm Measuring Horizon-Specific Systematic Risk via Spectral Betas Andrea Tamoni, Assistant Professor of Finance, London School of Economics and Political Science 4:30 - 5:15pm The Term Structure of Sovereign CDS and the Cross-Section Exchange Rate Predictability Abalfazl Zareei, Assistant Professor of Finance, Stockholm Business School 5:15 - 5:30pm Concluding Remarks Yin Luo, Quantitative Analysis, Economics and Strategy, and Vice Chairman - Wolfe Research |
Year(s) Of Engagement Activity | 2019 |
Description | 2nd ESRC Workshop on Textual Analysis in Accounting and Finance |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | To complete |
Year(s) Of Engagement Activity | 2019 |
Description | Article for IR Society INFORMED magazine on the use of AI to measure corporate reporting quality |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Professional Practitioners |
Results and Impact | Article commissions by the IR Society for the Annual Awards issue of their quarterly magazine. The article describes some of the methods used to score annual report quality. These scores feed into the IR Society Annual Awards decisions on the best examples of corporate reporting. |
Year(s) Of Engagement Activity | 2022 |
URL | https://irsociety.org.uk/files/Informed117-web.pdf |
Description | Article in The Conversation on corporate pay inequity |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | Article explored the potential link between increasing strike action in the UK and soaring CEO pay. the importance of pay transparency is emphasized, an example of which is the 2019 requirement for companies with more than 250 employees to report information on CEO pay relative to others' in the organization. However, one of consequence of a more informed debate is more conflict with employees, and in the prevailing economic climate this may fuel pressure for strikes. Nevertheless, the article concludes that it's hard to argue that keeping the scale of pay inequity in the shadows to reduce strike pressure is a better alternative. Increased conflict (in the form of debate) is almost certainly a necessary step on road to change. |
Year(s) Of Engagement Activity | 2022 |
URL | https://theconversation.com/strikes-why-soaring-ceo-pay-could-help-explain-uks-recent-industrial-act... |
Description | BBC Radio Lancashire interview |
Form Of Engagement Activity | A broadcast e.g. TV/radio/film/podcast (other than news/press) |
Part Of Official Scheme? | No |
Geographic Reach | Regional |
Primary Audience | Public/other audiences |
Results and Impact | 10-minute interview on 15 August 2019 at 16.35. the focus was on our new app for analyzing textual content in UK corporate reports. |
Year(s) Of Engagement Activity | 2019 |
Description | CCLA Roundtable on the use of machine learning to identify and analyse business modern slavery data for investors |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Industry/Business |
Results and Impact | This roundtable (organized by CCLA in partnership with Modern Slavery and Human Rights Policy and Evidence Centre) brought together leading investors and businesses with researchers who specialise both in machine learning techniques and in corporate modern slavery performance and disclosure. The aim was to facilitate a collaborative conversation that can help support more effective action on modern slavery. Leading investors are driving forward action on modern slavery, but to do that effectively they need accurate, meaningful data on business action to address modern slavery risk. Leading businesses want to be recognised for the positive steps they have taken but in order for that to happen there needs to be a consistent and comparable way to identify and assess their actions. Given the existing complex system of disclosure requirements and data providers, we want to ask the question: what role could machine learning tools and techniques play in supporting the collation and analysis of data on business modern slavery performance? How could it advance current practice and what challenges might it present? This Roundtable sought to address these questions. Agenda 1. Welcome and Introduction Dame Sara Thornton 2. Opening remarks Martin Buttle, CCLA Investment Management 3. Owain Johnstone, Modern Slavery and Human Rights Policy and Evidence Centre 4. Maha Khan, Finance Against Slavery and Trafficking 5. Data for investment decision-making Dan Neale, Church Commissioners Clemence Chatelin, CCLA Investment Management The challenges of modern slavery disclosure Elaine Mitchel-Hill, ESG and Human Rights Director, Marshalls PLC 6. Leveraging technology to gain insight Professor Steven Young, Lancaster University Adriana Bora, Queensland University of Technology Addressing AI bias Rajib Saha, Founder, Parabole 7.Moving forward How can AI support action on modern slavery? How could researchers help us all to move forward? |
Year(s) Of Engagement Activity | 2023 |
Description | COLLABORATIONS BETWEEN LINGUISTICS AND THE PROFESSIONS |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Other audiences |
Results and Impact | ESRC-funded event at Lancaster University (organised by the Centre for Corpus Approaches in Social Science). A free event exploring interactions between linguists and private-sector organisations help on 4-6 March 2019. A series of invited speakers from academia and business discussed experiences, challenges and opportunities in areas including publishing, IT, forensic analysis, organisational culture, marketing, financial reporting, and language teaching, learning and assessment. My talk reviewed ongoing work in the area of financial discourse and collaborations with financial market partners including Financial Conduct Authority and Financial Reporting Council. |
Year(s) Of Engagement Activity | 2019 |
URL | http://cass.lancs.ac.uk/mycalendar-events/?event_id1=65 |
Description | Center for Financial Reporting and Auditing Workshop "Natural Language Processing in Financial Markets" |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Industry/Business |
Results and Impact | 1-day workshop organised by ESMT Berlin with the aim of bring practitioners and academics together to discuss the role of natural language processing (NLP) in financial reporting research and prcatice. The audience comprised a mix of academics and financial market practitioners. The total number of attendees was approximately 60. The workshop comprised 5 sessions plus a panel discussion. The keynote academic presentation was delivered by Steven Young (Lancaster). The keynote practitioner presentation was delivered by Ryan Lafond (Deputy Chief Investment Officer at Algert Global LLC). Presentations and discussions focused on how accounting research and financial market prcatice can make better use of NLP technology. Follow-up discussions with KPMG have taken place with a view to identifying opportunities for collaboration in the area of sustainable reporting. |
Year(s) Of Engagement Activity | 2018 |
URL | https://www.esmt.org/faculty-research/centers-chairs-and-institutes/center-financial-reporting-and-a... |
Description | Commissioned workshop on NLP methods |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | Local |
Primary Audience | Professional Practitioners |
Results and Impact | One-day workshop commissioned by the Quantitative Research Team at RPMI Railpen (https://www.rpmirailpen.co.uk/) on NLP methods including machine learning classification, topic modelling, and information retrieval. We summarised results of our ongoing research; reviewed methods for topic modelling and made suggestions on how RPMI can extend their current work in this area; and showcased our approach to extracting document structure from UK annual reports. The workshop resulted in several action point for further collaboration including a student internship, sharing data and methods, and working together to scale-up annual report extraction to a global sample of firms. |
Year(s) Of Engagement Activity | 2019 |
Description | Corporate reporting on modern slavery and trafficking |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Industry/Business |
Results and Impact | Media press releases issued by Financial Reporting Council and Lancaster University on 25 April 2022. Daily Mail Online (Monthly Visitors: 393,743,455), Modern slavery backlash fears slow British company disclosures The independent (Monthly Visitors: 84,760,000), Modern slavery backlash fears slow British company disclosures, regulator says Yahoo.com (Monthly Visitors 7,105,291) EuroNews (Monthly Visitors: 33,232,724) Yahoo Finance (Monthly Visitors: 4,296,107) BNN Bloomberg online (Monthly Visitors: 704,601) Reuters Monthly Visitors: 44,413 Investing.com (Monthly Visitors: 1,510,641) Phys.org (Monthly Visitors: 6,936,997) Yahoo Canada Monthly Visitors: 1,219,770 Yahoo News Australia (Monthly Visitors: 596,672) Yahoo Singapore Market Screener (Monthly Visitors: 3,532,518) Devidscourse Monthly Visitors: 1,420,984 Personnel Today Businessfast BusinessMayor Tradingview DailyAdvent.com Nasdaq Monthly Visitors: 2,447,047 Newsbreak YahooNews Malaysia FX Empire Bloomberg Quint Construction News (Monthly Visitors: 440,593) AOL.co.uk (Monthly Visitors: 10,525,473) MSN About Manchester (Monthly Visitors: 120,370 ) Minutehack Scottish Financial News Today UK News |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.frc.org.uk/news/april-2022-(1)/frc-publishes-ground-breaking-report-which-finds-b |
Description | Data science professional development session for IFRS Foundation |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Policymakers/politicians |
Results and Impact | A 90-minute session delivered remotely to IFRS Foundation members examining the potential use of data science methods for analyzing corporate reporting outcomes and supporting policy development. Three invited speakers: Madhu Mathew (IFRS Foundation), Khrystyna Bochkay (University of Miami) and Steven Young (Lancaster University). Topics covered were machine learning, use of natural language processing (NLP) to analyse comment letters, and the challenges of using NLP methods to study corporate reports. Presentations were followed by a Q&A. |
Year(s) Of Engagement Activity | 2022 |
Description | European Accounting Association Doctoral Colloquium |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Plenary session on the problems and challenges facing mainstream accounting research examining financial discourse. I argue that much of the extant work fails to apply best practice methods from the NLP and corpus linguistics literatures. Instead, work adopts a quasi-scientific approach that emphasizes sample size and econometric rigor over word-sense disambiguation and meaning. The current approach represents a potential trap for inexperienced PhD researchers insofar as standard methods such as readability and tone can be computed at low cost for very large samples, which in turn can encourage researchers to focus on questions that are easy to address rather than questions that are interesting and important. I stress the need for a balanced approach to the analysis of financial discourse that combines small-sample manual analysis methods with large-sample automated scoring methods. |
Year(s) Of Engagement Activity | 2019 |
URL | http://www.eiasm.org/frontoffice/event_announcement.asp?event_id=1372#5839 |
Description | Financial Accounting Workshop |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | The aim of my session to review ways that academic accounting research can inform regulatory activities. I identified opportunities for researchers and discussed barriers to progress (and how they might be overcome). The talk was part of a one-day workshop organised by Bristol University. The event attracted approximately 30 participants including academic faculty, PhD students, and representatives from the accounting profession (International Accounting Standards Board). My session involved a presentation followed by discussion. Participants explored a range of issues regarding engagement activities including collaborative research opportunities, contracting, and the tension between impact versus publications in the context of academic progression. |
Year(s) Of Engagement Activity | 2018 |
Description | Financial Reporting Council Lab roundtable on business model-focused reporting |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Policymakers/politicians |
Results and Impact | Roundtable discussion organised by FRC Lab seeking feedback on draft report outlining its latest thinking on business models, set for publication in early November 2023. The aim of the session was to road test insights and proposals, with a view to tweaking content prior to final publication. Roundtable invitees included report sponsors from FRC Lab and representatives from asset management firms, investor relations practices, preparers, financial services firms, and academics. Session lasted 60 minutes and included a details of discussion of what business model reporting involves, how guidance on good reporting should be structured, and the format in which the final report should appear. FRC Lab took a number of points on board that will influence the final published report. |
Year(s) Of Engagement Activity | 2023 |
Description | IASB Panel discussion- The effect of technology on the investment process and how investors consume financial and ESG related data |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | The IFRS Foundation's annual conference (23-24 June, London) offers a unique opportunity to receive a comprehensive briefing on the latest developments at the IFRS Foundation. The conference provides an opportunity to network with 300+ leaders in financial reporting including preparers, standard-setters and regulators. The panel session provides attendees with an overview on investors' consumption of digital financial reports, sustainability reporting and big data (use of AI), how technology is transforming the way investors are making investment decisions, and explore the potential implications for the future of financial and sustainability reporting standard setting. Panel members also include Ann Tarca and Zach Gast (International Accounting Standards Board members), Ridhirma Nayyar (Director of Sustainability, RoiCan REIT ), Elena Philipova (Director, ESG Proposition, London Stock Exchange Group), Mohini Singh (Governance & Insights Centre, PwC). |
Year(s) Of Engagement Activity | 2022 |
URL | https://informaconnect.com/ifrs-foundation/agenda/1/ |
Description | ICAEW Regional Executive (Lancashire & South Lakeland) session on modern slavery reporting |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | Regional |
Primary Audience | Professional Practitioners |
Results and Impact | Presentation summarizing worst and best practice in modern slavery reporting by firms listed on the London Stock Exchange. The session was delivered remotely on 2 November 2022. A key theme discussed in the presentation included the focus on describing modern slavery policies at the expense of setting targets and evaluating process towards those targets. lack of engagement from a material fraction of companies was also highlighted, suggesting that these entities are either ignorant of the workforce risks facing them or choosing not to address the topic directly in public disclosures. The presentation was followed by a Q&A. |
Year(s) Of Engagement Activity | 2022 |
Description | ICAEW Roundtable on corporate governance and corporate failure |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Professional Practitioners |
Results and Impact | The Institute of Chartered Accountants in England & Wales (ICAEW) hosted a roundtable discussion on the topic "Why do companies fail?" on the 12 June. The roundtable discussion was chaired by a senior partner from EY and included senior members from the ICEAW Research Advisory Board plus 5 academics with expertise in corporate governance and corporate reporting. The aim of the roundtable was to bring together key academics and practitioners to discuss the issue of unexpected corporate failure, to refine an ICAEW Call for Papers in this area, and to plan for an engagement workshop on 3 October. The agenda for the discussion was: 1. Presentation on why companies fail 2. Discussion on "How can we reduce the risk of surprise failure?" 3. Discussion on "What is the role of academic literature?" 4. Finalizing logistics for moving forward, including discussing the call for papers, determining the length of the call and review process, advising on the current budget, and identifying additional dissemination destinations for the call for papers. 5. Discussing the format for the Corporate Governance workshop at Leeds Business School on 3rd October and requesting recommendations for workshop speakers. |
Year(s) Of Engagement Activity | 2023 |
Description | Insight Series seminar on Environmental, Social & Governance (ESG) issues in financial markets delivered by Barclays and hosted by Lancaster University Management School |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Undergraduate students |
Results and Impact | As companies around the world increasingly switch from unethical investments towards those that recognise the importance of social and environmental factors, this session delves deeper into Environmental, Social, and Governance (ESG) investing. The 45 minute lecture, followed by the opportunity for Q&A, will examine the context for ESG; the history of sustainability and its links with the UN's Sustainable Development Goals (SDGs). Delivered by Barclays experts, including Will Roberts (VP, Debt Finance), Lucy Eyers (RD, Public Sector) and Ian Chesham (Director, Private Bank), the insight session will cover the bank's own work in this area, as well as profiling other sectors, including client case studies illustrating key themes including net-zero, from a financing and investing perspective. The session also looks at the increasing career opportunities for graduates that are emerging in the ESG space |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.eventbrite.co.uk/e/barclays-insight-series-guest-lecture-tickets-324701209057 |
Description | Introduction to Textual Analysis and Natural Language Processing Workshop |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | A weekly workshop run over 5 weeks (3 hours per week) providing guidance on the use of important natural language processing (NLP) methods in finance to 24 investment professionals from leading investment banks and asset management firms including BlackRock, UBS, Fidelity, BoA Securities, and Jupiter Asset Management . The workshop was organised in partnership with INQUIRE UK (https://www.inquire.org.uk/). The workshop provided introductory and intermediate guidance on popular NLP methods and their application to financial market data. The programme introduced participants to the key steps of textual analysis, from extraction and preprocessing through to common machine learning methods and their applications. Content was targeted at participants interested in learning more about textual analysis methods and the opportunities they afford, but who were yet to apply NLP techniques on a routine basis. The primary objectives of the workshop were to: 1. Provide an introduction to the fundaments of textual analysis and natural language processing as applied to financial market data; 2. Distinguish between bag-of-words approaches to analysing text and semantic approaches that better reflect meaning and context; 3. Provide an introduction to word sense disambiguation methods to support semantic analysis; 4. Introduce supervised machine learning approaches for text classification; 5. Review topic modelling methods and associated procedures supporting topic selection. |
Year(s) Of Engagement Activity | 2020 |
URL | https://www.eventbrite.co.uk/e/introduction-to-textual-analysis-and-natural-language-processing-work... |
Description | Invited opinion piece in InCumbria magazine on capping executive pay |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | Regional |
Primary Audience | Other audiences |
Results and Impact | One of three contributors presenting the merits for and against capping executive pay. I argued that pay caps are not effective because they do not address the fundamental issues of inequity, weak accountability, and low productivity. Pay caps are a blunt, headline-grabbing policy that do not address inherent structural problems. Solutions to these problems require more subtle approaches to promote accountability and fairness. |
Year(s) Of Engagement Activity | 2022 |
Description | Keynote presentation at 2023 Financial Reporting and Business Communication Conference (6-7 July, Bath) |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | A joint keynote speech joint with Thomas Toomse-Smith (FRC Lab) to conference participants exploring interactions between accounting regulators and the research community in the area of corporate narrative reporting. Toomse-Smith introduced three themes that the FRC Lab is currently focusing on and where academic research can help to inform the debate: More disclosure on ESG; Less irrelevant (immaterial) disclosure in annual reports, and Better quality disclosure for Business Models. Young highlighted the opportunities for academic research to contribute to these debates but also emphasized the frictions preventing the academic accounting community from engaging in an effective and productive way. |
Year(s) Of Engagement Activity | 2023 |
Description | Knowledge Transfer Event with Financial Reporting Council |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | First of two planned Knowledge Transfer Events with the FRC as part of project FRC2023-0131 Analyzing trends in annual report language and content. Participants from the FRC included Head of Innovation and Digital - Regulatory Standards, Project Manager Financial Reporting Lab, and Data Analyst Team Leader. The objective of the session was to provide FRC colleagues with an overview of the annual report dataset and text processing resources that our work has produced. The FRC's aim is to integrate our data and processing resources into their analysis and decision making. The session covered the following issues: 1. Overview of process for extracting text and document structure (table of contents vs. pdf bookmarks) 2. Overview of method for distinguishing between annual report content and financial statements 3. Overview of method for classifying (tagging) sections in the annual report to generic categories (e.g., chair's letter, governance statement, etc.) 4. Summary of tagged sections (corpora) available for analysis 5. Overview of text processing pipeline (including tokenization, NER tagging, stop word removal, wordlist counts, etc.) 6. Overview of annual report database (2006-2022) and matching process to time-series consistency at the firm-level 7. Summary of available text resources 8. Key challenges faced in the research 9. Opportunities for the FRC from leveraging the data and methods |
Year(s) Of Engagement Activity | 2024 |
Description | Lancaster University press release for report co-authored with FRC on modern slavery reporting by UK companies |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | Press release leading to information from the report appearing in the following media outlets: Daily Mail Online (Monthly Visitors: 393,743,455), Modern slavery backlash fears slow British company disclosures The independent (Monthly Visitors: 84,760,000), Modern slavery backlash fears slow British company disclosures, regulator says Yahoo.com (Monthly Visitors 7,105,291) EuroNews (Monthly Visitors: 33,232,724) Yahoo Finance (Monthly Visitors: 4,296,107) BNN Bloomberg online (Monthly Visitors: 704,601) Reuters Monthly Visitors: 44,413 Investing.com (Monthly Visitors: 1,510,641) Phys.org (Monthly Visitors: 6,936,997) Yahoo Canada Monthly Visitors: 1,219,770 Yahoo News Australia (Monthly Visitors: 596,672) Yahoo Singapore Market Screener (Monthly Visitors: 3,532,518) Devidscourse Monthly Visitors: 1,420,984 Personnel Today Businessfast BusinessMayor Tradingview DailyAdvent.com Nasdaq Monthly Visitors: 2,447,047 Newsbreak YahooNews Malaysia FX Empire Bloomberg Quint Construction News (Monthly Visitors: 440,593) AOL.co.uk (Monthly Visitors: 10,525,473) MSN About Manchester (Monthly Visitors: 120,370 ) Minutehack Scottish Financial News Today UK News |
Year(s) Of Engagement Activity | 2022 |
Description | Language Data Analysis for Business and Professional Communication |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | The ESRC Centre for Corpus Approaches to Social Science, Lancaster University offers a practical training workshop focused on computational analysis of language data for businesses and professional organisations and anyone interested in communication in professional contexts. The data includes social media, newspapers, business reports, marketing materials and other data sources. The workshop introduces a new software tool #LancsBox X developed at Lancaster University, which can analyze and visualize large amounts of language data (millions and billions of words). Practical examples of uses of #LancsBox X (case studies) will be provided. My session provided an overview of using corpus methods to address research and practical questions about the quality of discourse in company financial reports. |
Year(s) Of Engagement Activity | 2023 |
URL | https://cass.lancs.ac.uk/mycalendar-events/?event_id1=3470 |
Description | Mandatory annual report descriptions of business model and strategy, investor uncertainty, and disclosure cascade effects |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | The Distinguished Speaker Series under the auspices of the CPA Ontario Accounting and Governance Research Centre at the university of Ottawa, Canada (23 November, 2021). The talk summarized research examining the capital market benefits of the requirement for UK listed firms to provide information on business model and strategy in the annual reports. The academic paper on on which the talk was bases is available at the following link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3212854 |
Year(s) Of Engagement Activity | 2021 |
Description | Mandatory annual report descriptions of business model and strategy, investor uncertainty, and disclosure cascade effects |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | Regional |
Primary Audience | Postgraduate students |
Results and Impact | Invited talk to researchers in accounting and finance at Alliance Manchester Business School (2 March 2022). The talk summarized research examining the capital market benefits of the requirement for UK listed firms to provide information on business model and strategy in the annual reports. The academic paper on on which the talk was bases is available at the following link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3212854 |
Year(s) Of Engagement Activity | 2022 |
Description | Meeting with Department Culture, Media & Sport (DCMS) to discuss cyber security reporting |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | Meeting with Jack Harrigan from DCMS (27 May 2023) to advise on opportunities for using natural language processing methods (NLP) to measure the quality of corporate reporting on cyber security and digital risk, and to inform a post-implementation review of the proposed new Resiliency Statement that is set to become a legal requirement for large UK companies in the next 12-18 months. |
Year(s) Of Engagement Activity | 2023 |
Description | NLP mini-conference involving colleagues from Lancaster University Management School and RPMI RailPen |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Professional Practitioners |
Results and Impact | One-day mini-conference brings together researchers at Lancaster with asset managers at RPMI RailPen to share methods and results for processing financial text. Four representatives from RPMI's quantitative analysis team presented results alongside three presentations from Lancaster researchers (including two PhD students) |
Year(s) Of Engagement Activity | 2020 |
Description | Never the Twain Shall Meet? The Ballard of Accounting and Natural Language Processing |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Keynote talk at 2022 joint BAFA Corporate Finance and Asset Pricing and Northern Area Group Annual Conference (14 January 2022). The conference attracts academics and PhD students from the UK and across the globe. My talk focused on the absence of sufficient collaboration between accounting and finance researchers and specialists in computer science and corpus linguistics, and the mechanisms for achieving greater collaboration in the future. |
Year(s) Of Engagement Activity | 2022 |
URL | https://conference.bafa.ac.uk/ |
Description | Paper prepared for European Financial Reporting Advisory Group (EFRAG) Academic Panel 1 June meeting |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | 6-page non-technical report summarizing key insights and themes for financial reporting regulators highlighted in the following paper: Lewis, C., Young, S. (2019). Fad or future: Automated analysis of financial text and its implications for corporate reporting. Accounting & Business Research 49(5) in press http://eprints.lancs.ac.uk/133315/ The executive summary of the report is as follows: Applying natural language processing (NLP) methods to analyze unstructured data in the corporate reporting package offers two generic benefits: • The ability to process large volumes of content at relatively low cost; • The ability to detect latent features that even manual analysis may struggle to identify. Realizing these benefits is conditional on low cost, reliable access to financial text on a large scale. The IASB defines users along a single dimension reflecting the information needs associated with their contractual relation with the entity. Increasing interest in NLP approaches suggests a second dimension that distinguishes between: • Traditional users, who adopt a manual reading strategy and typically view documents as a linear narrative or a key reference source; • Digitally sophisticated, who users operate on a larger scale, with the aim of extracting and processing content automatically to realize the generic benefits of NLP. The distinction foregrounds debate over the format and delivery of the financial reporting package, and whether it is possible to satisfy both groups via a single reporting model. NLP methods have important implications for the disclosure problem as defined by the IASB: • The problem of too much irrelevant information may be less of a concern because information overload is less of a concern for NLP applications • The potential for NLP to detect latent features raises questions about ex ante definitions of relevance. From a big data NLP perspective, relevance is determined by algorithms and statistical analysis rather than regulators. The same argument holds for materiality. NLP has implications for the effective communication: • NLP methods offer a (partial) means of overcoming ineffective communication by filtering-out boilerplate disclosure, translating technical jargon, highlighting links between relevant information, and identifying key reporting themes; • NLP offers the potential to change the way decision-makers use unstructured data by introducing a dynamic dimension that allows users to reformulate (normalize) disclosures and select as-reported content conditional on the specific decision context faced; • Use of NLP methods has implications for the definition of effective communication. Since NLP relies on reliable, low cost access to source data, the focus of effective communication expands to include delivery as well as content. A series of structural impediments involving two core themes of data access and collaboration restrict use of NLP methods to financial reporting data. Overcoming these impediments requires coordinated action by a range of key financial reporting stakeholders. |
Year(s) Of Engagement Activity | 2019 |
Description | Plenary speaker, British Accounting & Finance Association Northern Area Group meeting |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Postgraduate students |
Results and Impact | Session focused on the proposed benefits of automated analysis of text and evaluate extant research against these perceived advantages. Key themes emerging from a review of prior research are (a) a significant fraction of work is limited in scope and often fails to deliver many of the suggested benefits and (b) automated analysis is not a 'quick fix' replacement for close manual reading by domain experts. |
Year(s) Of Engagement Activity | 2019 |
Description | Presentation to European Financial Reporting Advisory Group (EFRAG) 18 October meeting |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Policymakers/politicians |
Results and Impact | Item on textual analysis included on meeting agenda, coupled with invitation to join the meeting and 60-minute discussion concerning the state of the art of research using these methods and how automated methods for analyzing text can assist EFRAG's activities. I opened the discussion by providing a brief overview of key issues. A range of related issues were then discussed. |
Year(s) Of Engagement Activity | 2019 |
Description | Presentation to Financial Reporting Council Lab |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | 60-minute presentation on 2 May 2023 to a subset of colleagues from the Financial Reporting Council (FRC) Lab whose focus is on improving strategy and business model reporting. The presentation draws on a stream of our work that analyses the properties of UK annual reporting on strategy and business model, and how these properties have changed over the period 2006-2018 in response to a combination of regulatory interventions and best practice developments. Results show that coverage of the strategy and business model theme has increased over time in terms of volume but that best practice reporting standards have been slower to take hold. We also show that the form of regulation matters in terms of catalyzing change. Specifically, we only find that regulation has an impact when it forms part of Company Law and is accompanied by guidance on what good disclosure looks like. |
Year(s) Of Engagement Activity | 2023 |
Description | Presentation to Financial Reporting Council on predicting accounting violations using quantitative & qualitative data |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | Invited talk to senior colleagues at the Financial Reporting Council (body responsible for regulating financial reporting in the UK). The aim of the talk was to summarize results of new research on predicting accounting violations. Our work applies machine learning techniques to unstructured data from UK annual reports to develop red flag signals for potential missreporting. The research represents a collaboration between Lancaster and the Financial Conduct Authority, who are developing a version of the model for implementation. Colleagues at the Financial Reporting Council are interested in applicability of a similar screening tool for their regulatory compliance work and we have therefore developed a version of the model design to predict the type of missreporting outcome that the Financial Reporting Council is keen to identify. Attendees at the presentation were: Helen Grimshaw, Senior Economist and Head of Strategy & Analytics (FRC) Richard Crisp, Case Director (FRC) Tom Roberts, Case Officer (FRC) Mark Shennan ,Policy and Strategy Director (FRC) Thomas Toomes-Smith, Project Director (FRC Financial Reporting Lab) Tom Crous, Assistant Case Examiner (FRC) Phil Fitz-Gerald, Director of Financial Reporting Lab (FRC Financial Reporting Lab) Mike Hirschfield, Technical Specialist Market Oversight Directorate (Financial Conduct Authority) The session lasted 90 minutes and comprised a presentation followed by Q&A. |
Year(s) Of Engagement Activity | 2020 |
Description | Presentation to Senior Management at FCA |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | Update on results of ongoing research collaboration involving development of methods to predict financial reporting violations. The aim of the presentation was to update senior FCA managers on results achived to date and the next steps in the model builing process. |
Year(s) Of Engagement Activity | 2018 |
Description | Press release CFIE-FRSE app and associated publication |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | The press release reads as follows: New software from Lancaster University cuts through hard-to-understand financial reports, to help investors and regulators. Researchers have developed the Corporate Financial Information Environment - Final Report Structure Extractor (CFIE-FRSE) app to dissect and analyse the narrative aspects of companies' annual reports, which are aimed at shareholders but also used by other stakeholders including financial analysts, prospective investors, journalists and regulators. Annual report narratives contain commentary on financial performance, as well as supplementary information on topics such as principal risks and corporate social responsibility policies - but management has a high level of discretion over report content and structure, and as a result, investors can struggle to find and understand the information they require. At present, there is no uniform structure to such documents, making comparison and large-scale analysis severely challenging. Professor Steve Young, Head of Accounting in LUMS, said: "Annual reports are highly unstructured, and different companies report in different ways, which makes extracting content and comparing reports very difficult. Almost every document is different. "Many reports are almost impossible for non-specialists to read, which is at odds with the trend towards a broader model of stakeholder reporting. "We have designed an app to extract commentary from these documents and normalise it across firms - making comparisons much easier. The procedure provides a reliable means of capturing and classifying these narratives." The interdisciplinary project has involved academics from Lancaster University Management School (LUMS), the School of Computing and Communications and the Department of Linguistics & English Language. There has already been interest in CFIE-FRSE from investment and hedge-fund managers, who would gain a greater insight into the status and stability of companies, as well as regulators looking to see where businesses may be trying to conceal information and where intervention is needed. It also allows them to see where regulation is working and where it may need to change. More than 26,000 documents published between 2003 and 2017 by companies listed on the London Stock Exchange have been analysed by the app and scored on features such as length, readability and sentiment. Because the CFIE-FRSE app detects report structure, scores are available for each section listed in the table of contents. Dr Mahmoud El-Haj, Senior Research Associate in the School of Computing and Communications at Lancaster University, said: "The app uses heuristic approaches and rule-based decision making to automatically detect the structure of an annual report. This helps the software to extract sections' text by knowing their start and end pages. "The app was trained to identify a set of common section titles (types) based on a training list of synonyms generated by accounting and finance experts. For example, the app is able to identify that the 'Letter to shareholders' in one company's report is the same as the 'Chairman's statement' in another company's report." Analysis of the annual reports processed by the app reveals a number of interesting features and reporting trends. For example, average report length has more than doubled over the last decade to almost 34,000 words. (A dissertation on a typical Masters degree comprises 10,000-13,000 words.) Average report readability is also poor; and there has been no noticeable improvement over the sample period. (Readability is measured using an algorithm that penalizes long sentences and complex words.) Long, unstructured documents containing complex language means that many retail investors and other non-specialist stakeholders struggle to understand the typical annual report. Sentiment also varies dramatically across different sections within the same report. For example, sections where content is shaped by regulation and compliance such as governance statements and remuneration reports are characterized by neutral language. In contrast, the tone of language is up to four times more positive in sections where directors have more reporting discretion and where performance is the primary focus. The CFIE-FRSE app aims cut through hard-to-understand annual report language and help users identify unusual patterns in corporate reports that may help to distinguish long-term financial strength from inflated short-term profits. Coverage as at 19 August 2019 includes: The business sites Bdaily and Business Up North have carried the news: https://www.businessupnorth.co.uk/lancaster-university-software-innovation-cuts-through-hard-to-understand-financial-reports/ https://bdaily.co.uk/articles/2019/08/14/new-software-from-lancaster-university-cuts-through-hard-to-understand-financial-reports-to-help-investors-and-regulators A Canadian finance website has covered the app here: https://www.wealthprofessional.ca/market-talk/company-results-can-be-complicated-but-academics-have-an-answer-278038.aspx And German, Swiss and Austrian sites have reported on it: https://computerwelt.at/news/neue-app-entschluesselt-geschaeftsberichte/ https://www.pressetext.com/news/20190813002 https://www.manager24.ch/xn--neue_app_entschlsselt_geschftsberichte-hhd26g.html https://www.ictk.ch/inhalt/neue-app-entschl%C3%BCsselt-gesch%C3%A4ftsberichte It has also been published on these sites: https://www.sciencecodex.com/lancaster-university-programme-brings-clarity-hard-decipher-company-annual-reports-631314 https://scienmag.com/lancaster-university-programme-brings-clarity-to-hard-to-decipher-company-annual-reports/ http://7thspace.com/headlines/929408/lancaster_university_programme_brings_clarity_to_hard_to_decipher_company_annual_reports.html https://www.techsite.io/p/1173989/t/lancaster-university-programme-brings-clarity-to-hard-to-decipher-company-annual-reports https://www.eurekalert.org/pub_releases/2019-08/lu-lup080819.php https://www.alphagalileo.org/en-gb/Item-Display/ItemId/181700?returnurl=https://www.alphagalileo.org/en-gb/Item-Display/ItemId/181700 Accountancy Daily has carried an article on the new software, which can be seen here: https://www.accountancydaily.co/university-launches-app-translate-annual-report-information BBC Radio Lancashire interviewed the PI on 15 August 2019 |
Year(s) Of Engagement Activity | 2019 |
Description | Research summary for Investor Relations Society |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Professional Practitioners |
Results and Impact | Non-technical summary of research study examining the properties of high quality annual reporting. The summary was requested by Communications Manager of the Investor Relations Society (Laura Hayter) and Chief Insight and Engagement Officer (Sallie Pilot) following conference call. |
Year(s) Of Engagement Activity | 2020 |
Description | Speaker at INQUIRE UK joint conference with INQUIRE EUROPE - 2019 Residential |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Plenary talk providing an overview of textual analysis methods in the context of quantitative investment strategies, followed by round table discussion with Q&A. The audience comprised quantitative financial analysis and fund managers from Europe and the the US. Interest in the value of using unstructured data in investment strategies is growing. However, practices are varied and core principles from linguistics and natural language processing are often overlooked in favour of "quick and dirty" approaches that ignore theory. The presentation walked the audience through the fundamental steps in the textual analysis pipeline (corpus creation, cleaning and preprocessing, corpus annotation, and text processing) with the aim of highlight best practice and alerting audience members to potential pitfalls. The presentation stimulated significant debate about how best to approach the task of quantifying narrative content and where the most promising opportunities lie. A number of fund managers followed up requesting additional information. |
Year(s) Of Engagement Activity | 2019 |
URL | https://www.inquire2019.co.uk/inquire2019/login |
Description | Talk to London Text Analytics |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Industry/Business |
Results and Impact | Part of a one-day workshop hosted at Accenture's London office. The event was organised by Tony Russell-Rose (UXLabs), Dyaa Albakour (Signal), and Udo Kruschwitz (University of Essex). Dr El-Haj (Senior RA on project) delivered one of the two invited presentations. The talk highlighted the importance of automatic extraction and textual analysis of financial disclosures for their contribution to corporate success. Textual disclosures help to clarify issues obscured by complex accounting methods, |
Year(s) Of Engagement Activity | 2018 |
URL | https://www.meetup.com/en-AU/textanalytics/events/252152599/ |
Description | The Linguistic Properties of Award-winning Annual Report Narratives |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Presentation to researchers and accounting professionals on the use of natural language processing and corpus linguistics methods to develop a model for scoring the quality of UK annual reports automatically (4 March 2022). The model is trained and evaluated on annual reports published between 2007 and 2018 by London Stock Exchange-listed firms shortlisted for an award by corporate reporting experts. We use methods from computational linguistics to identify discourse features that distinguish quality according to what management say (i.e.: content) and how they say it (i.e.: language structure). The final model comprises 10 features that characterize high quality reporting including more strategy-related commentary, less focus on growth, and greater language accessibility that promotes cognitive processing (evidenced by more relevancy markers, greater connectivity, more exclusive forms of language, and fewer grammatical words). Out-of-sample tests reveal predictive accuracy rates above 70%. The methods for identifying discourse properties are transferrable to many other settings including fraud detection, predicting internal control weaknesses and audit qualifications, and identifying takeover targets. |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.durham.ac.uk/business/news-and-events/events/2022/03/durham-rutgers-accounting-analytics... |
Description | Using AI to construct investment signals from unstructured data |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Undergraduate students |
Results and Impact | Financial analysis and investment strategies have traditionally focused on quantitative information (e.g., sales and earnings) because these data are easy to incorporate into statistical models. However, unstructured data such as text accounts for over 90% of all information available to financial market participants. Not surprisingly, quants investors are increasingly turning their attention to this potentially rich source of additional data to support investment decision-making and to generate alpha. Computational linguistics and natural language processing methods from computer science provide the tools for transforming information in text into quantitative investment signals. This session uses the example of sentiment analysis with machine learning algorithms to illustrate how professional investors are leveraging these tools in practice. The session highlights the importance of understanding some basic aspects of data science in the context of financial markets. (The session assumes no prior knowledge of computer science, AI, or coding.) |
Year(s) Of Engagement Activity | 2022 |
Description | Workshop on narrative reporting |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | This one-day workshop unites accounting researchers, financial market professionals, and experts in textual analysis with the goal of sharing views on the properties of high quality annual report narratives and the methods for analysing them. Enhanced practical understanding of the features shaping narrative reporting quality is critical for academic researchers interested in studying the phenomenon. Similarly, cutting-edge research in accounting affords insights into the text processing opportunities available to financial market professionals. Finally, both accounting researchers and professionals require guidance from linguistics and computer scientists on the practicalities of analysing text. The workshop programme comprises a novel combination of practice-focused sessions, research summaries, and introductions to aspects of natural language processing (NLP) and corpus linguistics for those new to the area. The workshop is supported by the Economic and Social Research Council, Lancaster University Management School, and the Centre for Corpus Approaches to Social Science. Sessions • Practitioner views on high quality annual reporting • Academic evidence on the properties of award-winning annual reports and the effectiveness of automated procedures for measuring sentiment and attribution in earnings announcements • Panel session on emerging issues in narrative reporting • Review of research methods in corpus linguistics and machine learning Speakers • Sallie Pilot (Chief Insight and Engagement Officer, Black Sun Plc) • Phil Fitz-Gerald (Director of the Financial Reporting Lab, Financial Reporting Council) • Peter Hogarth/Mark O'Sullivan (PwC) • Dr Eddie Bell (Head of Machine Learning, Ravelin) • Dr Vaclav Brezina (ESRC Centre for Corpus Approaches to Social Science) • Prof Martin Walker (Alliance Manchester Business School) • Prof Steven Young (Lancaster University Management School) |
Year(s) Of Engagement Activity | 2019 |
URL | http://ucrel.lancs.ac.uk/cfie/hqfrn2019.pdf |
Description | Workshop on textual analysis |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Workshop on Textual Analysis Methods in Accounting and Finance Lancaster University Management School Programme Day 1: 12 September 11.00-11.30 Introduction and welcome 11.30-12.30 Session 1 Overview of textual analysis literature in accounting and finance The aim of this session is to provide participants with an overview of extant research on textual analysis in the accounting and finance literature. We will focus on the proposed benefits of automated analysis of text and evaluate extant research against these perceived advantages. A key conclusion that will emerge from the review is that prior research is limited in scope and fails to deliver many of the suggested benefits. A critical theme informing the remainder of the workshop is that automated analysis is not a "quick fix" replacement for close manual reading by domain experts: most advanced applications of computational methods rely on significant manual reading for training and validation. Mention preprocessing and signpost coverage to Session 7 (but this is something that needs to be done for all text applications) 12.30-13.30 13.30-15.00 Session 2 Text extraction: Methods and pitfalls Automated text retrieval is the starting point for most large-sample applications of textual analysis in accounting and finance. This session will provide general guidelines on the text retrieval process, as well as hands-on experience with retrieving: 10-K annual report text (including harvesting documents from EDGAR) using python and R scripts; U.K. annual report narratives published as PDF files using the CFIE's java-based annual report tool; and U.K. earnings announcement narratives using the CFIE's java-based PEA tool. 15.00-15.15 15.15-17.15 Session 3 Readability and tone: Methods and critique Readability and tone (sentiment) are the two most commonly analysed features of financial market text. This session will review and critique methods used in the extant literature to measure readability and tone. We will demonstrate the problems of relying on standard readability metrics such as Fog to capture sophisticated narrative features such as complexity and understandability. We will also review the various approaches for measuring tone, ranging from simple wordlists to more advanced machine learning methods. A key conclusion that will emerge from this review is that simple measures of readability and tone provide limited scope for generating significant new insights in the literature. 18.00-19.30 Dinner & research presentation: Measuring Tone and Attribution A buffet dinner followed by a discussion of ongoing research assessing the relative accuracy of wordlists and machine learning for measuring the tone of performance sentences and the presence of managerial self-attribution bias in earnings announcements. Day 2: 13 September 09.00-10.30 Session 4 Constructing and using wordlists Wordlists are the most common approach to analysing financial text in the accounting and finance literature. This session discusses the advantages and weaknesses of using a wordlist approach to study financial text, reviews the most common wordlists employed in the literature, and considers some of the methods used in conjunction with wordlists to improve their classification performance. The session will also explain the different approaches to constructing wordlists, together with the strengths and weaknesses of each approach. 10.30-11.00 11.00-12.30 Session 5 Introduction to machine learning While machine learning forms the basis for a large proportion of research in the field of natural language processing, its uptake in accounting and finance is more limited. This session provides a board introduction to the field of machine learning methods, including both supervised and unsupervised approaches. Different aspects of machine learning and their relation will be explained including classification, named entity recognition, summarization, and topic modelling. 12.30-13.30 13.30-15.00 Session 6 Machine learning applications: Classification This session provides a hands-on introduction to classification using machine learning methods. Participants will use the Weka toolkit (https://www.cs.waikato.ac.nz/~ml/weka/downloading.html) to construct and evaluate a model for identifying fraudulent financial reporting using 10-K filings. Results and insights from the analysis will be used to highlight weaknesses in the extant literature and identify opportunities for future research. 15.00-15.15 15.15-17.15 Session 7 Machine learning applications: Topic modelling Several recent papers in the accounting literature have employed topic modelling methods such as Latent Dirichlet Allocation (LDA) to identify topics in financial text (e.g., Dyer et al. 2017). This session provides a hands-on introduction to topic modelling. Participants will use MALLET (http://mallet.cs.umass.edu/index.php) to extract topics from an annual report corpus. In addition to walking participants through the pracitcalites of the modelling process, the session will highlight the many problems associated with topic modelling and discuss alternative approaches to the content analysis problem. 18.00-19.30 Dinner & research presentation: Characteristics of Award Winning Annual Reports A buffet dinner followed by a discussion of ongoing research that employs corpus methods to isolate the distinguishing features of high quality annual reports as proxied by reports shortlisted for a narrative reporting award in the U.K. Day 3: 14 September 09.00-10.30 Session 8 Introduction to corpus linguistics This session provides an introduction to the theory and core methods underpinning the systematic analysis of a large body of text (i.e., a corpus). The session will cover the following themes: introduction to basic corpus linguistic concepts; presentation of different corpora types and examples; methodology for corpus design, compilation, and processing; corpus annotation, and examples of annotated data; basic resources and corpus analysis tools; examples from the literature of using corpus methods to analyse analysis of financial discourse 10.30-11.00 11.00-13.00 Session 9 Applied corpus methods: Tools and techniques This session provides hands-on experience of corpus analysis. The session will consist of two parts. Part 1 will introduce the corpus that will form the basis of our analysis (Brexit narratives in annual reports of UK financial firms), along with the AntConc software (Anthony 2014) for corpus analysis. In Part 2, participants will use the AntConc concordancer to analyse a small dataset and perform corpus tasks including: extracting word lists; finding collocates; and searching for n-grams and keywords. The session will conclude with a discussion of the insights gained from analysing the corpus. 13.00-14.00 and workshop ends 14.00-15.30 Optional surgery session for PhD students seeking feedback on research proposals and ongoing work involving analysis of text |
Year(s) Of Engagement Activity | 2018 |