Ikaite: A palaeoenvironmental proxy

Lead Research Organisation: University of Leeds
Department Name: School of Earth and Environment


In order to predict the consequences of global warming, it is essential to understand the climate response in terms of temperature and ice volume (hence sea level) to atmospheric carbon dioxide. The geological record of past climatic fluctuations has the power to reveal the natural interplay between these three Earth system parameters. One of the great challenges in paleoceanography since its inception, has been to reconstruct an independent record of oceanic temperature, or sea level throughout the Pleistocene ice ages in order to obtain an idea of the sensitivity and phasing of two crucial climate components: ice volume and temperature, during the glacial cycles. Foraminiferal d18O, the traditional proxy, is influenced by a combination of both ice volume and temperature so lack of constraint on seawater d18O prevents complete and quantitative interpretation of any marine carbonate d18O record. We have hypothesised that ikaite (CaCO3.6H2O), a metastable hydrated form of calcium carbonate which precipitates in organic rich sediments, captures the isotopic composition of ambient waters as hydration waters within the crystal (Rickaby et al., 20061), and offers a promising method of probing directly the d18Osw for periods other than the Last Glacial Maximum (LGM). We propose a multi-disciplinary approach to integrate mineralogical and biogeochemical laboratory experiments with field observations to characterise and understand the presence and climatic significance of ikaite and its isotopes within the natural environment. Our primary aims are to lay the foundations for, and apply this novel ikaite proxy to the reconstruction of d18Osw, hence ice volume, and extend application of the proxy to different timeslices and water masses.


10 25 50