Biological controls on soil respiration and its climatic response across a large tropical elevation gradient

Lead Research Organisation: NERC CEH (Up to 30.11.2019)
Department Name: Shore

Abstract

This project will advance our ability to quantify the influence of climatic warming on the emission of CO2 from soil by investigating how soil biological and functional diversity (roots and microbes), and soil chemical properties, limit respiration processes in soil. This work will be the first of its kind to address this question over a large elevation gradient and in a tropical region where biodiversity and biogeochemical cycling of carbon are very high. The carbon balance of an ecosystem is strongly dependent on the balance between photosynthesis and respiration. Globally, respiration on land is at present very slightly smaller than photosynthesis, meaning that terrestrial ecosystems are thought to be a 'sink' for atmospheric carbon dioxide, slowing the continual rise in carbon dioxide (CO2) concentration in the atmosphere. The largest fraction of total respiration from land comes from the decomposition of organic matter in soil. This decomposition leads to emissions of CO2 to the atmosphere. The rate of decomposition may increase under climatic warming, possibly accelerating climate change over this century, so we need urgently to understand what the risk of this happening is. Our study site is in the tropical rain forests of Peru, ranging in altitude from 3000 m to 220 m above sea level. The soil carbon stock is large, particularly at high elevation and so represents a risk in the sense that this carbon could be broken down and emitted as CO2 under climatic warming. Our preliminary data suggest that there are large differences in the temperature sensitivity of soil CO2 emissions in these forests, with high sensitivity at high elevations. This project aims to understand these differences in sensitivity by examining controls over the decomposition of organic matter that are exerted by the physical environment and also by roots, and by the decomposing microbes in soil. Our study site is ideally suited to address this question because it spans a natural temperature gradient of 12-26 degrees Celsius. We will use this in two ways: (i) to observe natural differences in CO2 emissions at different elevations and temperatures and (ii) to examine the effects of transplanting soil from one elevation and 're-planting' it at another. We have performed part (ii) for 4 sites across our elevation gradient and now haave an exceptional opportunity to study the effects, and to advance our understanding of short- and long-term climatic warming of soil CO2 emissions. Our approach will be to observe the temperature response characteristics of soil CO2 emission in natural and transplanted soil. We will make high temporal resolution measurements over 2.5 years, further manipulating the soil to see the effects of removing roots and mycorrhizal fungi from the decomposing system. We will measure the physical environment and the chemical complexity of the soil carbon. We will also measure the biological diversity of microbes in the soil using leading edge membrane- and DNA-based techniques. Finally we will use a laboratory experiment to trace the types of carbon compound that different microbes use from different sites along the study transect. Here we will 'feed' the soil with a stable (safe) carbon isotope and trace where that carbon is used and emitted - ie how much labeled CO2 is emitted and which organisms use it in their metabolism. This will give us valuable information to inform our analysis of the data we get from field measurements. In our analysis we will statistically examine what microbes/root functions are most important for constraining the response by soil respiration to climatic change and use our laboratory data to provide mechanistic interpretations of our statistical analysis. Combined we will develop a new understanding of the response by soil respiration to climatic warming and we will test how important biological diversity is for controlling and constraining that response, and its effect on climatic change.
 
Description Climate change is progressing and feedbacks of greenhouse gases from terrestrial ecosystems are increasing. There is considerable uncertainty regarding the impact of climate change on global soils and their role in mitigation or exacerbating warming. This research brought together a multidisciplinary UK and international research team to study the climate sensitivity of soils accross an Andean altitude gradient that replicated predicted changes intemperature. Specifically a 'soil transplant' experiment was conducted across the Peruvian Andes to mimic the effects of climate change on soil properties and functions. We measured soil biotic and abiotic characteristics as well as critical soil functions including enzyme activity, decomposition rates and greenhouse gas emissions.

Key findings so far include:
1. We have discovered significant differences in soil properties and functions accross the 4000m elevation gradient that correspond with local differences in climate and vegetation.
2. The resilience of soil to warming can be predicted by the microbial community composition and organic matter content.
3. That microbial communities are driven by temperature in confirmation of the Humboldt theory.
4. That soil greenhouse gas emission responses to warming are greatest in soils from colder areas.

The implications of these findings are that Tropical soils are vulnerable to predicted climate change and that different soils will respond uniquely. Patterns regarding microbial composition, soil functions and resilience to warming are evident. Together this suggests that models and expectations regarding the fate of soil carbon in reaction to atmospheric warming are probably underestimating the biotic response of the soil microbial community.
Exploitation Route The data and mechanistic evidence generated will be of interest to other academics and researchers. The IPCC will have interest in the findings for its reporting purposed to international governments. This will be of use to policy makers as we set targets for global greenhouse gas emissions through careful soil management. The key findings will be of interest to researchers and educators interested in the biotic controls on terrestrial carbon cycling. This will be particularly be relevant for earth system modelling of biosphere carbon flows and for land use change practitioners in South America.
Sectors Agriculture, Food and Drink,Education,Environment