Greenhouse gAs Uk and Global Emissions (GAUGE)

Lead Research Organisation: NERC Centre for Ecology and Hydrology
Department Name: Dise

Abstract

To minimize the risk of dangerous climate change associated with increasing concentrations of atmospheric greenhouse gases (GHG), as part of ongoing international efforts, the 2008 Climate Change Act requires that the UK reduces its GHG emissions by at least 80% by 2050, compared to 1990 levels. To support such legislation, methods must be developed to reduce uncertainty on existing national GHG emissions estimates and monitor the efficacy of emissions reduction strategies. In 2010, CO2 represented about 85% of total UK GHG emissions, with the remainder largely from methane (CH4) and nitrous oxide (N2O). In 2010, the main UK sources of CO2 were energy supply, road transport, business, and residential; the main sources of CH4 were agriculture and landfill with small sources from gas leakage and coal mines; and the main sources of N2O were agriculture, industrial process, and road transport. There are substantial associated uncertainties with sectoral estimates of these emissions, particularly for N2O.

The main focus of Greenhouse gAs Uk and Global Emissions (GAUGE) is to quantify UK budgets of CO2, CH4, and N2O from different sectors, and to improve global GHG budgets. The UK study will focus on fossil fuels and agriculture, the two largest sources of the three GHGs. We will achieve this by combining atmospheric measurements with computer models of the atmosphere, which describe the movement of GHGs after emission. We already have a reasonable idea of where GHGs are emitted but the size of the emissions typically has a large associated error. Depending on the emission type it may also have a substantial seasonal cycle (e.g., agriculture). It is therefore important we make regular GHG measurements at different times of the year and in different places. The UK research aircraft will provide the broad-scale 3-D perspective on the inflow and outflow of UK GHG budgets, complementing information from existing tall towers. The network of tall towers measure GHGs at 100-200m above the surface to ensure that the sampled air is representative of larger areas, and the towers are intentionally sited to provide estimates of GHG emissions in the Devolved Administrations. As part of GAUGE we will add to this network with a tower in the Scottish borders that provides substantially more information about the north of England, Scotland, and the North Sea; a tower over SE England, downwind of London; and we will support existing instruments on the BT tower in central London. The SE London tower and the BT tower together will allow us to provide the first multi-year record of urban emissions from a megacity. We will use GHG isotopes to improve understanding of the fossil fuel sources. A detailed study of agricultural GHG emissions will be conducted over East Anglia, allowing us to quantify the importance of this sector in the UK GHG budget. Weekly measurements aboard a North Sea ferry will provide constraints on UK GHG fluxes by regularly sampling transects of UK outflow. Satellite observations of GHGs offer a unique global perspective, linking UK emissions to the rest of the world, and we will work with NASA to develop and apply new observations to quantify global GHG budgets on a sub-UK spatial scale. Embedded in this long-term measurement strategy will be a measurement intensive to quantify London GHG emissions, where we will use the UK research aircraft to sample profiles of upwind/downwind air, validate dedicated satellite observations, and link urban measurements with downwind in situ and tall tower measurements.

In GAUGE we bring together computer models of the atmosphere, and a team of world-leading modellers, in order to relate observed variations of GHGs to estimates of the underlying emissions. Statistical approaches will be used to find emissions that best agree with the measurements, taking account of model and data uncertainties. The main outcome from GAUGE will be robust GHG emission estimates from the UK and from the world.

Planned Impact

Policy makers, atmospheric scientists, educational professionals, and the wider general public are among the long-term beneficiaries of GAUGE research. The intertwined science and policy questions associated with Deliverable A focus on quantifying the magnitude and uncertainty of UK and global GHG emissions and sinks. Our science will inform international assessment activities and will be of direct interest to ongoing international research activities (e.g., MACC-II and follow-on, ICOS, InGOS) and UK government departments, particularly DECC and Defra. More broadly, timely delivery of these emission estimates has implications for current UK legislation and nationwide commitments to international emission protocols. We will engage with MACC-II, DECC, Defra, and other potential stakeholders (e.g., private industry) by formal (GAUGE science team) and informal meetings.

We are fortunate that the general public already has some understanding of GHGs, which we will build on with a range of outreach activities using knowledge exchange professionals that already exist with our universities. First, we will establish an online presence, which can be done relatively quickly, with an outward-looking website and its centre. Downloadable educational material, in conjunction with material already available via other sites (e.g., DECC, NOAA, Global Carbon Project), will be available on the GAUGE site. This material will be aimed at secondary school kids, educators, and the wider general public. We will endeavour to make the GAUGE site current by including, for example, updated streams of data from the tall tower network. As the project progresses we anticipate running student projects some of which can write software to allow simple online data analysis (e.g., using HTML5). Past projects have identified the effectiveness of podcasting and we will work with NERC and our universities to organize these - with the breadth and depth of GAUGE activities there should be no shortage of material. GAUGE team members will also develop displays for international science festivals (e.g., Edinburgh) to advertise NERC-funded science, and for museums (e.g., Our Dynamic Earth in Edinburgh). We will also directly speak to the media.

GAUGE will provide career development for PhD students and PDRAs by involving them in the planning and implementation of field campaigns (including effective deployment of aircraft), presentations of results at project meetings, and national and international conferences, and writing peer-review publications. They will be encouraged to explore measurement and modelling opportunities that will exist within GAUGE, providing them with a well-rounded research experience. We will also engage talented undergraduates through funding tractable and useful summer 10-week projects associated with GAUGE activities, giving them valuable research experience in order to secure PhD placements. This worked extremely well during BORTAS, for instance, funded by a Philip Leverhulme Prize.

We will engage with the academic science community via the usual routes. We will hold regular science team meetings, which will include a half-day when we will engage with stakeholders. From a UK perspective, we will have a presence at NCAS and NCEO science team meetings, and will engage with the Royal Meteorological Society conferences. From an international perspective, we we will attend EGU, AGU, the CO2 conference (June 2013, China), and have a presence on a very large number of international bodies and activities.

Publications

10 25 50

publication icon
Helfter Carole (2013) Carbon dioxide and methane emission dynamics in central London (UK) in EGU General Assembly Conference Abstracts

publication icon
Helfter Carole (2015) Sources of greenhouse gases and carbon monoxide in central London (UK) in EGU General Assembly Conference Abstracts

 
Description Direct flux measurements of London's greenhouse gas emissions from the BT Tower show that whilst emissions of CO and CO2 are accurately predicted by the London Emissions Inventory, emissions of CH4 are underestimated by a factor of two. Because the CH4 emission follows a clear diurnal cycle, the missing source cannot be the underestimation in leakage from the gas supply network as this should be fairly constant over the day.

Regular measurements of the greenhouse gas (GHG) concentrations in the outflow of the UK, using a commercial ferry that hugged the East Coast of the UK as it travelled between Zeebruegge (Belgium) and Rosyth (Scotland) were used to provide an alternative top-down constraint of the UK's GHG emission budget: for methane, the emissions derived from these ferry-based measurements are consistent with bottom-up emission inventory. However, for CO2, the ferry based estimate exceeds the UK anthropogenic emissions estimates, suggesting that biogenic / terrestrial sources may contribute to the enhancement in the outflow.
Exploitation Route Further research may be required to pinpoint the missing sources.
The UK emission inventories (LAEI & NAEI) will need to be revised to reflect the measurements.
The results may have impact on the reporting of greenhouse gas emissions from the UK within the IPCC process.
This is of particular relevance in the light of the stringent greenhouse gas emission targets of the UK government and now agreed internationally in Paris.
Sectors Environment,Government, Democracy and Justice

 
Description Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
Amount £3,180,000 (GBP)
Funding ID NE/S003614/1 
Organisation Natural Environment Research Council 
Sector Public
Country United Kingdom
Start 02/2019 
End 02/2023
 
Title BT Tower concentrations and fluxes of CO, CO2 and CH4 
Description Concentrations and fluxes of CO, CO2 and CH4 measured on top of the BT Tower. 
Type Of Material Database/Collection of data 
Year Produced 2014 
Provided To Others? Yes  
Impact Identification of missing source of CH4 in London. 
URL http://www.europe-fluxdata.eu/ingos/site-details?id=536
 
Title Concentrations of CO2 and CH4 in the outflow from the UK 
Description Dataset of 1-minute concentrations of CO2 and CH4 measured aboard a ship of opportunity going back and forth between Rosyth near Edinburgh, UK, and Zeebrugge, Belgium for most of 2014/15. 
Type Of Material Database/Collection of data 
Year Produced 2015 
Provided To Others? Yes  
Impact Used for inversion modelling of CO2/CH4 emissions from the UK. 
 
Description Contribution to NERC 50th anniversary celebration abaord RRS Discovery 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Policymakers/politicians
Results and Impact We presented a poster on the verification of pollutant emissions from London at the CEH stall during the NERC 50th anniversary celebration aboard the RRS Discovery, which was based on NERC grant research. Depending on the day the audience included local and national policy makers, school children and other members of the public.
Year(s) Of Engagement Activity 2015
 
Description Presentation at the NERC Atmospheric Science Showcase at Cranfield 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Professional Practitioners
Results and Impact A presentation and a stall were contributed to the Atmospheric Science Showcase event in Cranfield which formed part of NERC's 50th anniversary celebrations.
Year(s) Of Engagement Activity 2015
 
Description Stall at the NERC Into-the-blue event, Manchester 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact A stall was provided at the Into-the-blue event, Manchester, that included a practical demonstration the flux measurement approaches used for methane on the BT Tower, together with the a display of the results of the measurements and their implications.
Year(s) Of Engagement Activity 2016