NC S&F Commissioning: Atmospheric Measurement Facility (AMF)

Lead Research Organisation: University of Leeds


The AMF (Atmospheric Measurement Facility) was established in April 2014, following a review of NCAS's ground-based facilities and the service they provided to the community. AMF deploys state-of-the-art instrumentation such as radars, lidars and mass spectrometers, together with ancillary instrumentation and logistics, for a range of projects both ground-based, ship-based and airborne. It supports experiments in the UK and across the world, e.g. India, China and Ghana over the past 2 years. The laboratory facilities provide calibration standards in gas-phase chemistry at York and access to the environmental wind tunnel at Surrey University. The field sites at Weybourne, Cape Verde and the BT Tower (and though close collaboration with the STFC radars, Chilbolton and Capel Dewi) offer the community a range of environments for field experiments where the basic necessities of power, internet and space are provided, alongside standard meteorological measurements. Together, AMF offers to the community far more capacity and expertise than could be maintained at an individual University. It also has a commitment to developing data standards that enable measurements to be easily combined and re-used in future. By continuity of staff and a commitment to maintaining up-to-date provision it ensures that the UK community is able to compete internationally in experimental atmospheric science. This proposal sets out how AMF plans to continue to provide a facility meeting the needs of the NERC funded research community for high-quality atmospheric field measurements and laboratory data. The facility web pages may be accessed through the portal at, where the different elements are described in detail and the calendar showing when elements are available may be viewed. Applications are accepted through an on-line form at any time. Each application is assigned to an AMF instrument scientist, who performs a technical evaluation then liaises with the applicant to discuss details of the requirement. Following a successful initial appraisal, a formal offer is made to the PI defining the service to be provided. The main focus of AMF is support for NERC grant-funded projects, and priority is given to applications that are submitted alongside a JeS application. The next level of priority is given to applications for NERC NC science, NERC-funded PhD students and NERC grants where the application is received after the grant is awarded. If there is spare capacity, AMF will offer its services to other scientific organisations (like the Met Office) or commercial users, from whom suitable costs will be recovered. Generally, NERC applicants receive 2 months instrument scientist time for each project and are only asked to pay additional T&S and consumables associated with a deployment. Should a proposal require more than 2 months IS time the PI will need to find the necessary excess staff funding. AMF's core rationale is the delivery of high-quality datasets to the customer, and the nature of the dataset provided by each instrument or experiment is defined clearly on the AMF web site. Core data are supplied within 2 months of the end of an experiment; the delay allows for proper quality assurance and quality control. Derived products may also be provided through discussion with the IS but these can take longer as they rely on the scientist's individual expertise. AMF is working with the community and with CEDA to develop data standards that make all our data accessible and re-usable by future users. There has been particularly close collaboration with CFARR and MSTRF in this project which puts us on the road to the merger of the three facilities in 2020.


10 25 50