Understanding links between microbial communities and emerging fungal pathogens in complex ecosystem
Lead Research Organisation:
Zoological Soc London Inst of Zoology
Department Name: Insitute of Zoology
Abstract
Modern-day amphibians are known to be suffering rates of extinction that far exceed any other class of vertebrates, including those experienced by mammals and birds, and nearly one third of amphibian species are threatened. The question of why amphibians are going extinct at these accelerated rates has puzzled scientists for three decades. A clue to the mystery came about when scientists working in Central America and Australia noted that the rapid declines in amphibian biodiversity were spreading in a wave-like manner. These patterns of decline were caused by an emerging infectious disease and in 1997 researchers discovered that a fungal pathogen, called a 'chytrid', was the cause, naming it Batrachochytrium dendrobatidis (Bd). Since then, our research has identified South East Asia as the cradle of this amphibian pandemic, and has mapped the spread of Bd worldwide At the same time, alongside finding regions of the world where Bd is highly pathogenic, we have also discovered places where it is not causing any obvious disease which begs the question Why?
Increasingly, we find that the invasion, establishment and amplification of Bd in uninfected amphibians is strongly influence by the microbial communities that are found inhabiting the skins of amphibians. As Alexander Fleming famously discovered, microbes predate and attack one another with a diverse array of strategies and our research seeks to understand how this microbial warfare influences whether an amphibian community survives, or succumbs, to its infection. This question will be addressed by using high-throughput DNA sequencing technologies to characterise the microbes on amphibians around the world using molecular barcoding techniques. Our main idea is that the amphibians that survive infection infection are 'clothed' by a protective community of bacteria and fungi. We will show whether this it true, then will attempt to identify the toxic molecules that are protecting the amphibians from their chytrid onslaught.
Finally, we will seek to isolate and grow microbes that are protective against Bd - sometimes called 'probiotics'. Here, we will extend our focus to include fungi because (and as Fleming showed) they can be very potent protectors against invasive organisms. We already have isolated candidate fungal 'promycotics', and we will use experiments to determine whether they do in fact protect amphibians against lethal infection by Bd; such promycotics may then offer a much-needed biocontrol against emerging pathogens such as Bd. This, ultimately, is the major applied goal of our project.
Increasingly, we find that the invasion, establishment and amplification of Bd in uninfected amphibians is strongly influence by the microbial communities that are found inhabiting the skins of amphibians. As Alexander Fleming famously discovered, microbes predate and attack one another with a diverse array of strategies and our research seeks to understand how this microbial warfare influences whether an amphibian community survives, or succumbs, to its infection. This question will be addressed by using high-throughput DNA sequencing technologies to characterise the microbes on amphibians around the world using molecular barcoding techniques. Our main idea is that the amphibians that survive infection infection are 'clothed' by a protective community of bacteria and fungi. We will show whether this it true, then will attempt to identify the toxic molecules that are protecting the amphibians from their chytrid onslaught.
Finally, we will seek to isolate and grow microbes that are protective against Bd - sometimes called 'probiotics'. Here, we will extend our focus to include fungi because (and as Fleming showed) they can be very potent protectors against invasive organisms. We already have isolated candidate fungal 'promycotics', and we will use experiments to determine whether they do in fact protect amphibians against lethal infection by Bd; such promycotics may then offer a much-needed biocontrol against emerging pathogens such as Bd. This, ultimately, is the major applied goal of our project.
Planned Impact
Who will benefit from our research?
Our work will be of direct use to those working to stem the spread of invasive species and infection. Major project stakeholders are the GB non-native species secretariat, DEFRA, the Animal and Plant Health Agency and Natural England whom all work to contain the spread of infection into GB. Alongside Government, there is a UK-wide network of NGO's whom work on amphibian conservation and the threat that chytrids present - two of our Project Partners are FrogLife whom have supported our work on Great Crested Newts over the years. Outside of the UK, there is a global network of conservation biologists, international NGOs ('Save the Frogs!'; 'Amphibian Ark'; the IUCN), national NGOs ('KARCH'; 'Museo Nacional Ciencias Naturales') whom we are actively engaged in with in facilitating attempts to understand and mitigate the panzootic of chytrids and other fungal infections (bat White Nose Syndrome, sudden oak death, crayfish plague, Ash dieback). Our methods and data are of direct relevance to understanding patterns of transmission and host loss. As such our research will directly impact the policy and activities that these end-users and stakeholders deliver: A direct example is our 2014 work with the Morris Animal Foundation and Mohamed Bin Zayed Species Conservation Fund to assess whether an outbreak of Bd is occurring on Madagascar - this resulted in a 'top 100 paper' out of 11,000 in Scientific Reports 2015.
More widely, our research addresses the broader issue of biosecurity and pathogen evolution. A major output of globalisation is a more homogenised biota and it is becoming increasingly recognised that novel plagues constitute a major threat to biodiversity and ecosystem function. Our work is of interest to policy advisors and trade bodies (the OIE, the EU, OECD) and scientists working to understand the ecosystem-level impact of invasive species. Our main point of interaction with the UK government is via the 'Amphibians Health Committee' that comprises academics, NGO's and government officials (APHA/ VLA/ DEFRA/ NNSS): this committee works to ensure that the UK response to the introduction of new pathogenic chytrids is evidence-based and not reactive.
2. How will they benefit?
Project outputs framed for the visiting public at Imperial College and ZSL: Visitors to ZSL's London Zoo (annually 1 million) can see our research outputs via the newly refurbished AmphibianConservation Centre. Two dedicated video screens report results of the amphibian disease research program and daily live presentations made by keepers, researchers and trained presenters provide a proactive platform for informing the public regarding amphibian diseases, amphibian conservation, and our efforts to understand and mitigate the problem. Additionally, several thousand Greater London school children take part in ZSL's EdExcel program, a large component of which comprises presentations by members of the amphibian disease research team. Regular public symposia have amphibian disease issues as the topic, hosted by notables such as Sir David Attenborough. At Imperial College the team regularly presents at our summer Science Festival and Fringe event - these event's attract many thousands of public participants.
Our work will be of direct use to those working to stem the spread of invasive species and infection. Major project stakeholders are the GB non-native species secretariat, DEFRA, the Animal and Plant Health Agency and Natural England whom all work to contain the spread of infection into GB. Alongside Government, there is a UK-wide network of NGO's whom work on amphibian conservation and the threat that chytrids present - two of our Project Partners are FrogLife whom have supported our work on Great Crested Newts over the years. Outside of the UK, there is a global network of conservation biologists, international NGOs ('Save the Frogs!'; 'Amphibian Ark'; the IUCN), national NGOs ('KARCH'; 'Museo Nacional Ciencias Naturales') whom we are actively engaged in with in facilitating attempts to understand and mitigate the panzootic of chytrids and other fungal infections (bat White Nose Syndrome, sudden oak death, crayfish plague, Ash dieback). Our methods and data are of direct relevance to understanding patterns of transmission and host loss. As such our research will directly impact the policy and activities that these end-users and stakeholders deliver: A direct example is our 2014 work with the Morris Animal Foundation and Mohamed Bin Zayed Species Conservation Fund to assess whether an outbreak of Bd is occurring on Madagascar - this resulted in a 'top 100 paper' out of 11,000 in Scientific Reports 2015.
More widely, our research addresses the broader issue of biosecurity and pathogen evolution. A major output of globalisation is a more homogenised biota and it is becoming increasingly recognised that novel plagues constitute a major threat to biodiversity and ecosystem function. Our work is of interest to policy advisors and trade bodies (the OIE, the EU, OECD) and scientists working to understand the ecosystem-level impact of invasive species. Our main point of interaction with the UK government is via the 'Amphibians Health Committee' that comprises academics, NGO's and government officials (APHA/ VLA/ DEFRA/ NNSS): this committee works to ensure that the UK response to the introduction of new pathogenic chytrids is evidence-based and not reactive.
2. How will they benefit?
Project outputs framed for the visiting public at Imperial College and ZSL: Visitors to ZSL's London Zoo (annually 1 million) can see our research outputs via the newly refurbished AmphibianConservation Centre. Two dedicated video screens report results of the amphibian disease research program and daily live presentations made by keepers, researchers and trained presenters provide a proactive platform for informing the public regarding amphibian diseases, amphibian conservation, and our efforts to understand and mitigate the problem. Additionally, several thousand Greater London school children take part in ZSL's EdExcel program, a large component of which comprises presentations by members of the amphibian disease research team. Regular public symposia have amphibian disease issues as the topic, hosted by notables such as Sir David Attenborough. At Imperial College the team regularly presents at our summer Science Festival and Fringe event - these event's attract many thousands of public participants.
Publications

Bates KA
(2022)
Microbiome function predicts amphibian chytridiomycosis disease dynamics.
in Microbiome

Campbell LJ
(2019)
Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian.
in Frontiers in microbiology

Canessa S
(2019)
Conservation decisions under pressure: Lessons from an exercise in rapid response to wildlife disease
in Conservation Science and Practice

Doherty-Bone T
(2019)
Amphibian chytrid fungus in Africa - realigning hypotheses and the research paradigm
in Animal Conservation

Fisher MC
(2020)
Chytrid fungi and global amphibian declines.
in Nature reviews. Microbiology


Harrison XA
(2019)
Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen.
in Frontiers in microbiology

Jervis P
(2021)
Post-epizootic microbiome associations across communities of neotropical amphibians.
in Molecular ecology

Scheele BC
(2019)
Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.
in Science (New York, N.Y.)

Smith D
(2022)
Challenging a host-pathogen paradigm: Susceptibility to chytridiomycosis is decoupled from genetic erosion.
in Journal of evolutionary biology
Description | Cross-continental, interlineage competition and virulence of Batrachochytrium dendrobatidis |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Presentation at 9th World Congress of Herpetology, session Batrachochytrium dendrobatidis 1. Established new contacts with teams also investigating chytrid competition dynamics |
Year(s) Of Engagement Activity | 2020 |
URL | http://www.wchnz.com/wch2020 |
Description | Did Bd-CAPE drive the Kihansi spray toad (Nectophrynoides asperginis) to extinction in the wild? |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | PDRA presentation on chytrid genome associated with first and only reported decline of amphibians on the African continent. Numerous African researchers engaged afterwards to discuss options for surveys and post-decline investigations of amphibians. |
Year(s) Of Engagement Activity | 2020 |
URL | http://www.wchnz.com/wch2020 |
Description | Mitigating single pathogen and co-infections that threaten amphibian biodiversity |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | First major scientific event examining how to mitigate single and multiple pathogens in amphibian populations threatened by infectious diseases. Conveners include PIs from 3 NERC standard grants. 2 day symposium involving researchers from across Europe, the Americas and Australasia, and 2 single day workshops, 1 on microbiomes and 1 doing a mock disease intervention. One publication from 2nd workshop. Attendees report overwhelmingly as to quality and reach of event, new collaborations formed and suggestion this become a once every few years event. |
Year(s) Of Engagement Activity | 2019 |
Description | Resolving Batrachochytrium dendrobatidis lineage distribution and ecology in South Africa |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | PhD student presentation on developing and applying lineage specific qPCRs to understand lineage interactions in nature. Extensive interest in developing similar tools for other lineages and applying existing tools to European settings. |
Year(s) Of Engagement Activity | 2020 |
URL | http://www.wchnz.com/wch2020 |